Edit model card

AraBERT_token_classification__AraEval24_aug_rand_concat

This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4270
  • Precision: 0.0167
  • Recall: 0.0238
  • F1: 0.0196
  • Accuracy: 0.6741

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.9197 1.0 938 1.1953 0.0093 0.0092 0.0092 0.6946
0.8179 2.0 1876 1.1406 0.0018 0.0019 0.0018 0.6789
0.6136 3.0 2814 1.1013 0.0125 0.0136 0.0131 0.7152
0.4945 4.0 3752 1.1583 0.0097 0.0110 0.0103 0.6996
0.4105 5.0 4690 1.2239 0.0140 0.0182 0.0158 0.6816
0.3536 6.0 5628 1.3073 0.0155 0.0214 0.0180 0.6658
0.3097 7.0 6566 1.3764 0.0147 0.0208 0.0172 0.6574
0.2729 8.0 7504 1.3447 0.0141 0.0192 0.0162 0.6810
0.2525 9.0 8442 1.4392 0.0160 0.0234 0.0190 0.6629
0.2393 10.0 9380 1.4270 0.0167 0.0238 0.0196 0.6741

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.12.1
  • Datasets 2.13.2
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.