AraBERT_token_classification_AraEval24_18_labels_augmented
This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9960
- Precision: 0.0682
- Recall: 0.0162
- F1: 0.0262
- Accuracy: 0.8549
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.682 | 1.0 | 3215 | 0.8014 | 0.2083 | 0.0006 | 0.0012 | 0.8632 |
0.59 | 2.0 | 6430 | 0.8254 | 0.0833 | 0.0002 | 0.0005 | 0.8632 |
0.5212 | 3.0 | 9645 | 0.8533 | 0.0468 | 0.0026 | 0.0049 | 0.8614 |
0.454 | 4.0 | 12860 | 0.8556 | 0.0412 | 0.0062 | 0.0108 | 0.8578 |
0.4305 | 5.0 | 16075 | 0.8899 | 0.0389 | 0.0035 | 0.0064 | 0.8596 |
0.3871 | 6.0 | 19290 | 0.9225 | 0.0630 | 0.0061 | 0.0111 | 0.8601 |
0.3621 | 7.0 | 22505 | 0.9227 | 0.0467 | 0.0099 | 0.0163 | 0.8554 |
0.3258 | 8.0 | 25720 | 0.9746 | 0.0604 | 0.0141 | 0.0229 | 0.8557 |
0.3078 | 9.0 | 28935 | 0.9713 | 0.0655 | 0.0161 | 0.0258 | 0.8551 |
0.2999 | 10.0 | 32150 | 0.9960 | 0.0682 | 0.0162 | 0.0262 | 0.8549 |
Framework versions
- Transformers 4.30.2
- Pytorch 1.12.1
- Datasets 2.13.2
- Tokenizers 0.13.3
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.