Edit model card

AraBERT_token_classification_AraEval24_18_labels_augmented

This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9960
  • Precision: 0.0682
  • Recall: 0.0162
  • F1: 0.0262
  • Accuracy: 0.8549

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.682 1.0 3215 0.8014 0.2083 0.0006 0.0012 0.8632
0.59 2.0 6430 0.8254 0.0833 0.0002 0.0005 0.8632
0.5212 3.0 9645 0.8533 0.0468 0.0026 0.0049 0.8614
0.454 4.0 12860 0.8556 0.0412 0.0062 0.0108 0.8578
0.4305 5.0 16075 0.8899 0.0389 0.0035 0.0064 0.8596
0.3871 6.0 19290 0.9225 0.0630 0.0061 0.0111 0.8601
0.3621 7.0 22505 0.9227 0.0467 0.0099 0.0163 0.8554
0.3258 8.0 25720 0.9746 0.0604 0.0141 0.0229 0.8557
0.3078 9.0 28935 0.9713 0.0655 0.0161 0.0258 0.8551
0.2999 10.0 32150 0.9960 0.0682 0.0162 0.0262 0.8549

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.12.1
  • Datasets 2.13.2
  • Tokenizers 0.13.3
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.