YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

🌍 Disaster Prediction Model

This repository contains a deep learning model for disaster classification from images, capable of identifying six disaster-related categories including fire, water damage, infrastructure damage, and more. The model is built using ResNet50 and trained for image classification tasks.

🧠 Model Details

  • Architecture: ResNet50
  • Trained On: Kaggle Disaster Dataset
  • Image Size: 256x256
  • Input: RGB image
  • Output: Disaster category
  • License: MIT
  • Pipeline Tag: image-classification
  • Main Metric: Accuracy

πŸ“¦ Installation & Cloning

# Install Git LFS (if not already installed)
git lfs install

# Clone the repository
git clone https://huggingface.co/Luwayy/disaster-prediction

πŸ” Classes

The model predicts one of the following disaster categories:

ID Class Name
0 Damaged_Infrastructure
1 Fire_Disaster
2 Human_Damage
3 Land_Disaster
4 Non_Damage
5 Water_Disaster

πŸ“Έ Example Usage (Python)

import keras
import numpy as np
from PIL import Image
import requests
from io import BytesIO

# Load the model
model = keras.layers.TFSMLayer(
    "disaster-prediction/kaggle/working/disaster_model",
    call_endpoint="serving_default"
)

# Load and preprocess image
url = 'https://www.spml.co.in/Images/blog/wdt&c-152776632.jpg'
response = requests.get(url)
img = Image.open(BytesIO(response.content)).convert("RGB").resize((256, 256))
img_array = np.array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0).astype(np.float32)

# Predict
output = model(img_array)
preds = list(output.values())[0].numpy()
pred_index = np.argmax(preds)

# Class labels
labels = [
    "Damaged_Infrastructure",
    "Fire_Disaster",
    "Human_Damage",
    "Land_Disaster",
    "Non_Damage",
    "Water_Disaster"
]

print("Predicted class:", labels[pred_index])

βš™οΈ Preprocessing

  • Resize: (256, 256)
  • Scale: Normalize pixel values by dividing by 255
Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support