ayatsuri/academic-ai-detector
This model is a fine-tuned version of distilbert/distilbert-base-uncased on NicolaiSivesind/human-vs-machine dataset. It achieves the following best results on the evaluation set:
- Train Loss: 0.0910
- Validation Loss: 0.0326
- Train Accuracy: 0.9937
- Train Recall: 0.9927
- Train Precision: 0.9947
- Train F1: 0.9937
- Validation Accuracy: 0.99
- Validation Recall: 0.986
- Validation Precision: 0.9940
- Validation F1: 0.9900
- Epoch: 0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2625, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Set | Loss | Accuracy | Recall | Precision | F1 |
---|---|---|---|---|---|
Train | 0.0910 | 0.9937 | 0.9927 | 0.9947 | 0.9937 |
Validation | 0.0326 | 0.99 | 0.986 | 0.9940 | 0.9900 |
Framework versions
- Transformers 4.41.1
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for Ludwigsrls/ai-detector
Base model
distilbert/distilbert-base-uncased