File size: 6,438 Bytes
808ba28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
license: cc-by-nc-4.0
tags:
- merge
- lazymergekit
- dpo
- rlhf
dataset:
- mlabonne/truthy-dpo-v0.1
- mlabonne/distilabel-intel-orca-dpo-pairs
base_model:
- mlabonne/Monarch-7B
language:
- en
---

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/LxRUvkSATmy-UDKN54Q3H.jpeg)

# πŸ‘‘ NeuralMonarch-7B

NeuralMonarch-7B is a DPO fine-tuned of [mlabonne/Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B/) using the [jondurbin/truthy-dpo-v0.1](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1) and [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) preference datasets.

It is based on a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/OmniTruthyBeagle-7B-v0](https://huggingface.co/mlabonne/OmniTruthyBeagle-7B-v0)
* [mlabonne/NeuBeagle-7B](https://huggingface.co/mlabonne/NeuBeagle-7B)
* [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B)

Special thanks to [Jon Durbin](https://huggingface.co/jondurbin), [Intel](https://huggingface.co/Intel), and [Argilla](https://huggingface.co/argilla) for the preference datasets.

**Try the demo**: https://huggingface.co/spaces/mlabonne/NeuralMonarch-7B-GGUF-Chat

## πŸ” Applications

This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template (works perfectly with LM Studio).

Compared to other 7B models, it performs well in instruction following and reasoning tasks. For a chat/RP model with strong reasoning abilities, check out [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B).

## ⚑ Quantized models

* **GGUF**: https://huggingface.co/mlabonne/NeuralMonarch-7B-GGUF

## πŸ† Evaluation

### Nous

NeuralMonarch-7B is one of the best-performing 7B models on Nous' benchmark suite (evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval)). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).

| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [**NeuralMonarch-7B**](https://huggingface.co/mlabonne/NeuralMonarch-7B) [πŸ“„](https://gist.github.com/mlabonne/64050c96c6aa261a8f5b403190c8dee4) | **62.73** | **45.31** | **76.99** | **78.35** | **50.28** |
| [AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) [πŸ“„](https://gist.github.com/mlabonne/1d33c86824b3a11d2308e36db1ba41c1) | 62.74 | 45.37 | 77.01 | 78.39 | 50.2 |
| [Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B) [πŸ“„](https://gist.github.com/mlabonne/0b8d057c5ece41e0290580a108c7a093) | 62.68 | 45.48 | 77.07 | 78.04 | 50.14 |
| [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [πŸ“„](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
| [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) [πŸ“„](https://gist.github.com/mlabonne/14687f1eb3425b166db511f31f8e66f6) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
| [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [πŸ“„](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 |
| [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B) [πŸ“„](https://gist.github.com/mlabonne/0e49d591787185fa5ae92ca5d9d4a1fd) | 62.3 | 45.85 | 77.26 | 76.06 | 50.03 |
| [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) [πŸ“„](https://gist.github.com/CultriX-Github/dbdde67ead233df0c7c56f1b091f728c) | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 |
| [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) [πŸ“„](https://gist.github.com/CultriX-Github/df0502599867d4043b45d9dafb5976e8) | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 |

### EQ-bench

NeuralMonarch-7B is also outperforming 70B and 120B parameter models on [EQ-bench](https://eqbench.com/) by [Samuel J. Paech](https://twitter.com/sam_paech), who kindly ran the evaluations.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/dnCFxieqLiAC3Ll6CfdZW.png)

### Open LLM Leaderboard

NeuralMonarch-7B is one of the best-performing 7B models on the Open LLM Leaderboard.

### MT-Bench

```
########## First turn ##########
                                    score
model                       turn         
gpt-4                       1     8.95625
OmniBeagle-7B               1     8.31250
AlphaMonarch-7B             1     8.23750
claude-v1                   1     8.15000
NeuralMonarch-7B            1     8.09375
gpt-3.5-turbo               1     8.07500
claude-instant-v1           1     7.80000

########## Second turn ##########
                                     score
model                       turn          
gpt-4                       2     9.025000
claude-instant-v1           2     8.012658
OmniBeagle-7B               2     7.837500
gpt-3.5-turbo               2     7.812500
claude-v1                   2     7.650000
AlphaMonarch-7B             2     7.618750
NeuralMonarch-7B            2     7.375000

########## Average ##########
                                score
model                                
gpt-4                        8.990625
OmniBeagle-7B                8.075000
gpt-3.5-turbo                7.943750
AlphaMonarch-7B              7.928125
claude-instant-v1            7.905660
claude-v1                    7.900000
NeuralMonarch-7B             7.734375
NeuralBeagle14-7B            7.628125
```

## πŸ’» Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/NeuralMonarch-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```