Mixtral MOE 5x7B
MoE of the following models :
- Toten5/Marcoroni-neural-chat-7B-v1
- NurtureAI/neural-chat-7b-v3-16k
- mncai/mistral-7b-dpo-v6
- cookinai/CatMacaroni-Slerp
- ignos/Mistral-T5-7B-v1
gpu code example
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx5_MoE_30B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
CPU example
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx5_MoE_30B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.