Edit model card

gut_1024-finetuned-lora-bert-base-t2t-multi

This model is a fine-tuned version of AIRI-Institute/gena-lm-bert-base-t2t-multi on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4764
  • F1: 0.8478
  • Mcc Score: 0.5903
  • Accuracy: 0.8049

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss F1 Mcc Score Accuracy
0.7012 0.02 100 0.6683 0.7478 0.0 0.5971
0.7003 0.04 200 0.6391 0.7825 0.3306 0.6710
0.6583 0.05 300 0.6211 0.7853 0.3430 0.6778
0.6381 0.07 400 0.6512 0.7812 0.3247 0.6681
0.6438 0.09 500 0.6524 0.3380 0.1874 0.5004
0.6028 0.11 600 0.5646 0.8004 0.5013 0.7606
0.5154 0.12 700 0.5437 0.8392 0.5576 0.7884
0.5226 0.14 800 0.4823 0.8503 0.5901 0.8024
0.5104 0.16 900 0.4856 0.8452 0.5851 0.8028
0.5538 0.18 1000 0.4764 0.8478 0.5903 0.8049

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
139M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for LiukG/gut_1024-finetuned-lora-bert-base-t2t-multi

Finetuned
(10)
this model