V0503HMA9H
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0619
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9162 | 0.09 | 10 | 0.6741 |
0.26 | 0.18 | 20 | 0.1259 |
0.1199 | 0.27 | 30 | 0.1014 |
0.1056 | 0.36 | 40 | 0.0882 |
0.0808 | 0.45 | 50 | 0.0722 |
0.0834 | 0.54 | 60 | 0.0733 |
0.0778 | 0.63 | 70 | 0.0708 |
0.0769 | 0.73 | 80 | 0.0877 |
0.0887 | 0.82 | 90 | 0.0852 |
0.0958 | 0.91 | 100 | 0.0714 |
0.0887 | 1.0 | 110 | 0.0714 |
0.0764 | 1.09 | 120 | 0.0741 |
0.0738 | 1.18 | 130 | 0.0756 |
0.0733 | 1.27 | 140 | 0.0791 |
0.0723 | 1.36 | 150 | 0.0697 |
0.093 | 1.45 | 160 | 0.0785 |
0.0805 | 1.54 | 170 | 0.0684 |
0.0737 | 1.63 | 180 | 0.0776 |
0.0675 | 1.72 | 190 | 0.0714 |
0.0732 | 1.81 | 200 | 0.0746 |
0.0607 | 1.9 | 210 | 0.0659 |
0.0616 | 1.99 | 220 | 0.0631 |
0.0445 | 2.08 | 230 | 0.0711 |
0.0413 | 2.18 | 240 | 0.0712 |
0.0397 | 2.27 | 250 | 0.0714 |
0.0385 | 2.36 | 260 | 0.0688 |
0.0416 | 2.45 | 270 | 0.0649 |
0.0375 | 2.54 | 280 | 0.0662 |
0.0362 | 2.63 | 290 | 0.0642 |
0.0372 | 2.72 | 300 | 0.0621 |
0.0372 | 2.81 | 310 | 0.0625 |
0.0348 | 2.9 | 320 | 0.0620 |
0.0361 | 2.99 | 330 | 0.0619 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for Litzy619/V0503HMA9H
Base model
microsoft/phi-2