V0503HMA5H
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1346
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7787 | 0.09 | 10 | 0.1611 |
0.1597 | 0.18 | 20 | 0.1230 |
0.1177 | 0.27 | 30 | 0.1023 |
0.1021 | 0.36 | 40 | 0.0896 |
0.085 | 0.45 | 50 | 0.0808 |
0.0884 | 0.54 | 60 | 0.0808 |
0.0855 | 0.63 | 70 | 0.0706 |
0.0789 | 0.73 | 80 | 0.0902 |
0.087 | 0.82 | 90 | 0.0869 |
0.1125 | 0.91 | 100 | 8.7126 |
2.2018 | 1.0 | 110 | 0.4319 |
0.2705 | 1.09 | 120 | 0.2003 |
0.759 | 1.18 | 130 | 0.2586 |
0.2778 | 1.27 | 140 | 0.1786 |
0.191 | 1.36 | 150 | 0.2223 |
0.177 | 1.45 | 160 | 0.1639 |
0.1691 | 1.54 | 170 | 0.1591 |
0.16 | 1.63 | 180 | 0.1638 |
0.1535 | 1.72 | 190 | 0.1508 |
0.1501 | 1.81 | 200 | 0.1572 |
0.1549 | 1.9 | 210 | 0.1487 |
0.1523 | 1.99 | 220 | 0.1505 |
0.1538 | 2.08 | 230 | 0.1558 |
0.1493 | 2.18 | 240 | 0.1474 |
0.1438 | 2.27 | 250 | 0.1439 |
0.1455 | 2.36 | 260 | 0.1425 |
0.1406 | 2.45 | 270 | 0.1433 |
0.1402 | 2.54 | 280 | 0.1382 |
0.1371 | 2.63 | 290 | 0.1385 |
0.138 | 2.72 | 300 | 0.1355 |
0.1352 | 2.81 | 310 | 0.1354 |
0.1366 | 2.9 | 320 | 0.1347 |
0.1368 | 2.99 | 330 | 0.1346 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for Litzy619/V0503HMA5H
Base model
microsoft/phi-2