V0503HMA3H
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0645
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8325 | 0.09 | 10 | 0.2278 |
0.1637 | 0.18 | 20 | 0.1099 |
0.1091 | 0.27 | 30 | 0.0944 |
0.1005 | 0.36 | 40 | 0.0753 |
0.078 | 0.45 | 50 | 0.0763 |
0.0836 | 0.54 | 60 | 0.0758 |
0.0774 | 0.63 | 70 | 0.0752 |
0.081 | 0.73 | 80 | 0.0833 |
0.0844 | 0.82 | 90 | 0.0798 |
0.0867 | 0.91 | 100 | 0.0696 |
0.0786 | 1.0 | 110 | 0.0691 |
0.0661 | 1.09 | 120 | 0.0868 |
0.0673 | 1.18 | 130 | 0.0756 |
0.0768 | 1.27 | 140 | 0.0772 |
0.0696 | 1.36 | 150 | 0.0668 |
0.0753 | 1.45 | 160 | 0.0711 |
0.0613 | 1.54 | 170 | 0.0679 |
0.07 | 1.63 | 180 | 0.0669 |
0.0605 | 1.72 | 190 | 0.0642 |
0.0695 | 1.81 | 200 | 0.0716 |
0.0606 | 1.9 | 210 | 0.0683 |
0.0682 | 1.99 | 220 | 0.0649 |
0.0452 | 2.08 | 230 | 0.0787 |
0.0492 | 2.18 | 240 | 0.0683 |
0.0432 | 2.27 | 250 | 0.0756 |
0.0358 | 2.36 | 260 | 0.0719 |
0.04 | 2.45 | 270 | 0.0634 |
0.0337 | 2.54 | 280 | 0.0639 |
0.0338 | 2.63 | 290 | 0.0670 |
0.0335 | 2.72 | 300 | 0.0659 |
0.0351 | 2.81 | 310 | 0.0654 |
0.0368 | 2.9 | 320 | 0.0647 |
0.039 | 2.99 | 330 | 0.0645 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for Litzy619/V0503HMA3H
Base model
microsoft/phi-2