V0503HMA21H
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0680
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6091 | 0.09 | 10 | 0.2393 |
0.1804 | 0.18 | 20 | 0.1108 |
0.11 | 0.27 | 30 | 0.1074 |
0.1038 | 0.36 | 40 | 0.0839 |
0.0835 | 0.45 | 50 | 0.0787 |
0.0859 | 0.54 | 60 | 0.0875 |
0.0877 | 0.63 | 70 | 0.0791 |
0.0836 | 0.73 | 80 | 0.0868 |
0.0858 | 0.82 | 90 | 0.0691 |
0.0801 | 0.91 | 100 | 0.0699 |
0.0746 | 1.0 | 110 | 0.0641 |
0.0551 | 1.09 | 120 | 0.0679 |
0.0615 | 1.18 | 130 | 0.0700 |
0.0649 | 1.27 | 140 | 0.0656 |
0.0591 | 1.36 | 150 | 0.0696 |
0.0646 | 1.45 | 160 | 0.0622 |
0.0593 | 1.54 | 170 | 0.0624 |
0.0611 | 1.63 | 180 | 0.0600 |
0.0534 | 1.72 | 190 | 0.0607 |
0.0616 | 1.81 | 200 | 0.0598 |
0.0525 | 1.9 | 210 | 0.0617 |
0.0497 | 1.99 | 220 | 0.0595 |
0.0349 | 2.08 | 230 | 0.0617 |
0.0315 | 2.18 | 240 | 0.0783 |
0.0286 | 2.27 | 250 | 0.0710 |
0.0275 | 2.36 | 260 | 0.0714 |
0.0287 | 2.45 | 270 | 0.0705 |
0.0257 | 2.54 | 280 | 0.0698 |
0.0219 | 2.63 | 290 | 0.0708 |
0.0251 | 2.72 | 300 | 0.0705 |
0.0273 | 2.81 | 310 | 0.0691 |
0.0256 | 2.9 | 320 | 0.0681 |
0.0256 | 2.99 | 330 | 0.0680 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for Litzy619/V0503HMA21H
Base model
microsoft/phi-2