V0503HMA15H
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0621
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0737 | 0.09 | 10 | 0.7884 |
0.3234 | 0.18 | 20 | 0.1215 |
0.1161 | 0.27 | 30 | 0.0895 |
0.0962 | 0.36 | 40 | 0.0803 |
0.0823 | 0.45 | 50 | 0.0726 |
0.0839 | 0.54 | 60 | 0.0701 |
0.0768 | 0.63 | 70 | 0.0678 |
0.0731 | 0.73 | 80 | 0.0769 |
0.0819 | 0.82 | 90 | 0.0701 |
0.0911 | 0.91 | 100 | 0.0724 |
0.0879 | 1.0 | 110 | 0.0649 |
0.067 | 1.09 | 120 | 0.0965 |
0.0719 | 1.18 | 130 | 0.0795 |
0.0726 | 1.27 | 140 | 0.0759 |
0.0803 | 1.36 | 150 | 0.0949 |
0.0806 | 1.45 | 160 | 0.0644 |
0.0681 | 1.54 | 170 | 0.0719 |
0.0795 | 1.63 | 180 | 0.0771 |
0.0705 | 1.72 | 190 | 0.0961 |
0.0946 | 1.81 | 200 | 0.0737 |
0.0633 | 1.9 | 210 | 0.0801 |
0.069 | 1.99 | 220 | 0.0664 |
0.0471 | 2.08 | 230 | 0.0708 |
0.0407 | 2.18 | 240 | 0.0713 |
0.0415 | 2.27 | 250 | 0.0734 |
0.0391 | 2.36 | 260 | 0.0758 |
0.0441 | 2.45 | 270 | 0.0652 |
0.0353 | 2.54 | 280 | 0.0646 |
0.0359 | 2.63 | 290 | 0.0659 |
0.034 | 2.72 | 300 | 0.0652 |
0.0392 | 2.81 | 310 | 0.0638 |
0.0354 | 2.9 | 320 | 0.0624 |
0.0385 | 2.99 | 330 | 0.0621 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for Litzy619/V0503HMA15H
Base model
microsoft/phi-2