O0430HMA2
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0294
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.7246 | 0.09 | 10 | 0.1959 |
0.1775 | 0.18 | 20 | 0.1537 |
0.1537 | 0.27 | 30 | 0.1589 |
0.1516 | 0.36 | 40 | 0.1523 |
0.1518 | 0.45 | 50 | 0.1481 |
0.1508 | 0.54 | 60 | 0.1490 |
0.1514 | 0.63 | 70 | 0.1474 |
0.1499 | 0.73 | 80 | 0.1540 |
0.1476 | 0.82 | 90 | 0.1486 |
0.1447 | 0.91 | 100 | 0.1347 |
0.1356 | 1.0 | 110 | 0.0905 |
0.0979 | 1.09 | 120 | 0.0900 |
0.3159 | 1.18 | 130 | 0.0714 |
0.3542 | 1.27 | 140 | 0.0738 |
0.085 | 1.36 | 150 | 0.0609 |
0.0639 | 1.45 | 160 | 0.0610 |
0.0555 | 1.54 | 170 | 0.0549 |
0.067 | 1.63 | 180 | 0.0581 |
0.1336 | 1.72 | 190 | 0.0647 |
0.0592 | 1.81 | 200 | 0.0594 |
0.059 | 1.9 | 210 | 0.0561 |
0.0585 | 1.99 | 220 | 0.0543 |
0.0577 | 2.08 | 230 | 0.0547 |
0.0528 | 2.18 | 240 | 0.0567 |
0.0516 | 2.27 | 250 | 0.0511 |
0.0533 | 2.36 | 260 | 0.0455 |
0.0428 | 2.45 | 270 | 0.0457 |
0.0386 | 2.54 | 280 | 0.0384 |
0.0386 | 2.63 | 290 | 0.0344 |
0.0343 | 2.72 | 300 | 0.0324 |
0.0311 | 2.81 | 310 | 0.0303 |
0.0337 | 2.9 | 320 | 0.0296 |
0.0334 | 2.99 | 330 | 0.0294 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0430HMA2
Base model
allenai/OLMo-1B