G0521HMA26H2
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1233
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7533 | 0.09 | 10 | 1.4230 |
1.0512 | 0.18 | 20 | 0.5986 |
0.3803 | 0.27 | 30 | 0.1989 |
0.1564 | 0.36 | 40 | 0.1744 |
0.147 | 0.45 | 50 | 0.2292 |
0.1479 | 0.54 | 60 | 0.2788 |
0.1448 | 0.63 | 70 | 0.1496 |
0.1444 | 0.73 | 80 | 0.1560 |
0.1358 | 0.82 | 90 | 0.1688 |
0.1287 | 0.91 | 100 | 0.1792 |
0.1314 | 1.0 | 110 | 0.1689 |
0.1221 | 1.09 | 120 | 0.1936 |
0.111 | 1.18 | 130 | 0.1777 |
0.1187 | 1.27 | 140 | 0.1412 |
0.1216 | 1.36 | 150 | 0.2297 |
0.1161 | 1.45 | 160 | 0.1417 |
0.1134 | 1.54 | 170 | 0.1235 |
0.1096 | 1.63 | 180 | 0.1318 |
0.1106 | 1.72 | 190 | 0.1812 |
0.1113 | 1.81 | 200 | 0.1179 |
0.1089 | 1.9 | 210 | 0.1297 |
0.109 | 1.99 | 220 | 0.1219 |
0.0944 | 2.08 | 230 | 0.1428 |
0.0972 | 2.18 | 240 | 0.1483 |
0.089 | 2.27 | 250 | 0.1814 |
0.0906 | 2.36 | 260 | 0.2539 |
0.0936 | 2.45 | 270 | 0.2099 |
0.0864 | 2.54 | 280 | 0.2426 |
0.0835 | 2.63 | 290 | 0.1394 |
0.0865 | 2.72 | 300 | 0.1288 |
0.0923 | 2.81 | 310 | 0.1242 |
0.0898 | 2.9 | 320 | 0.1233 |
0.0923 | 2.99 | 330 | 0.1233 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/G0521HMA26H2
Base model
google/gemma-2b