G0513HMAB3
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1174
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9144 | 0.09 | 10 | 1.8171 |
1.6608 | 0.18 | 20 | 1.4138 |
1.2059 | 0.27 | 30 | 0.9062 |
0.6819 | 0.36 | 40 | 0.4067 |
0.2762 | 0.45 | 50 | 0.1792 |
0.1622 | 0.54 | 60 | 0.1512 |
0.1503 | 0.63 | 70 | 0.1473 |
0.1496 | 0.73 | 80 | 0.1468 |
0.1422 | 0.82 | 90 | 0.1453 |
0.1426 | 0.91 | 100 | 0.1438 |
0.142 | 1.0 | 110 | 0.1436 |
0.1382 | 1.09 | 120 | 0.1390 |
0.134 | 1.18 | 130 | 0.1356 |
0.1342 | 1.27 | 140 | 0.1369 |
0.1391 | 1.36 | 150 | 0.1356 |
0.1326 | 1.45 | 160 | 0.1313 |
0.129 | 1.54 | 170 | 0.1287 |
0.1302 | 1.63 | 180 | 0.1276 |
0.1316 | 1.72 | 190 | 0.1297 |
0.1269 | 1.81 | 200 | 0.1252 |
0.1271 | 1.9 | 210 | 0.1229 |
0.1242 | 1.99 | 220 | 0.1229 |
0.1193 | 2.08 | 230 | 0.1212 |
0.1226 | 2.18 | 240 | 0.1216 |
0.1172 | 2.27 | 250 | 0.1213 |
0.1202 | 2.36 | 260 | 0.1198 |
0.1173 | 2.45 | 270 | 0.1200 |
0.112 | 2.54 | 280 | 0.1186 |
0.1126 | 2.63 | 290 | 0.1182 |
0.1152 | 2.72 | 300 | 0.1175 |
0.1133 | 2.81 | 310 | 0.1174 |
0.117 | 2.9 | 320 | 0.1175 |
0.1177 | 2.99 | 330 | 0.1174 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/G0513HMAB3
Base model
google/gemma-2b