G0513HMA24H
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1114
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.1589 | 0.09 | 10 | 2.7634 |
2.422 | 0.18 | 20 | 1.8450 |
1.3644 | 0.27 | 30 | 0.8162 |
0.4569 | 0.36 | 40 | 0.1885 |
0.17 | 0.45 | 50 | 0.1622 |
0.1549 | 0.54 | 60 | 0.1520 |
0.1502 | 0.63 | 70 | 0.1508 |
0.1525 | 0.73 | 80 | 0.1485 |
0.1547 | 0.82 | 90 | 0.1488 |
0.1467 | 0.91 | 100 | 0.1482 |
0.1483 | 1.0 | 110 | 0.1482 |
0.1434 | 1.09 | 120 | 0.1475 |
0.1437 | 1.18 | 130 | 0.1492 |
0.1427 | 1.27 | 140 | 0.1385 |
0.1412 | 1.36 | 150 | 0.1381 |
0.1351 | 1.45 | 160 | 0.1341 |
0.1334 | 1.54 | 170 | 0.1312 |
0.1321 | 1.63 | 180 | 0.1271 |
0.1329 | 1.72 | 190 | 0.1333 |
0.1298 | 1.81 | 200 | 0.1244 |
0.1278 | 1.9 | 210 | 0.1251 |
0.1277 | 1.99 | 220 | 0.1219 |
0.1163 | 2.08 | 230 | 0.1188 |
0.1154 | 2.18 | 240 | 0.1200 |
0.1136 | 2.27 | 250 | 0.1185 |
0.117 | 2.36 | 260 | 0.1167 |
0.1147 | 2.45 | 270 | 0.1159 |
0.1084 | 2.54 | 280 | 0.1149 |
0.1077 | 2.63 | 290 | 0.1130 |
0.1098 | 2.72 | 300 | 0.1119 |
0.1125 | 2.81 | 310 | 0.1115 |
0.1124 | 2.9 | 320 | 0.1114 |
0.1119 | 2.99 | 330 | 0.1114 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/G0513HMA24H
Base model
google/gemma-2b