wav2vec2-large-mms-1b-nhi-adapterft-ilv_fold1

This model is a fine-tuned version of facebook/mms-1b-all on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6054
  • Wer: 0.3871
  • Cer: 0.1165

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 20
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.312 1.6529 200 0.8322 0.7050 0.2128
0.8371 3.3058 400 0.6980 0.5965 0.1790
0.7485 4.9587 600 0.6473 0.5388 0.1606
0.6799 6.6116 800 0.6305 0.5407 0.1561
0.6308 8.2645 1000 0.6215 0.4876 0.1467
0.6359 9.9174 1200 0.6104 0.4979 0.1457
0.5936 11.5702 1400 0.5851 0.4799 0.1431
0.5757 13.2231 1600 0.5906 0.4769 0.1389
0.5479 14.8760 1800 0.5851 0.4826 0.1377
0.5516 16.5289 2000 0.5596 0.4685 0.1373
0.5269 18.1818 2200 0.5788 0.4624 0.1334
0.5131 19.8347 2400 0.5708 0.4952 0.1411
0.495 21.4876 2600 0.5743 0.4532 0.1303
0.4898 23.1405 2800 0.5731 0.4421 0.1290
0.4718 24.7934 3000 0.5610 0.4471 0.1307
0.4717 26.4463 3200 0.5691 0.4498 0.1307
0.4573 28.0992 3400 0.5787 0.4348 0.1277
0.4587 29.7521 3600 0.5597 0.4345 0.1253
0.4265 31.4050 3800 0.5582 0.4219 0.1246
0.4383 33.0579 4000 0.5665 0.4127 0.1229
0.416 34.7107 4200 0.5615 0.4241 0.1256
0.408 36.3636 4400 0.5561 0.4264 0.1257
0.4014 38.0165 4600 0.5676 0.4272 0.1255
0.3929 39.6694 4800 0.5799 0.4199 0.1224
0.3764 41.3223 5000 0.5859 0.4119 0.1197
0.3765 42.9752 5200 0.5763 0.4092 0.1207
0.3783 44.6281 5400 0.5926 0.4264 0.1241
0.36 46.2810 5600 0.5598 0.4012 0.1182
0.3625 47.9339 5800 0.5811 0.4257 0.1228
0.3615 49.5868 6000 0.5826 0.4096 0.1215
0.3331 51.2397 6200 0.5792 0.4119 0.1211
0.3378 52.8926 6400 0.5749 0.3993 0.1192
0.3322 54.5455 6600 0.5691 0.4100 0.1224
0.3298 56.1983 6800 0.5781 0.4020 0.1188
0.3216 57.8512 7000 0.5834 0.4131 0.1207
0.3141 59.5041 7200 0.5874 0.3963 0.1184
0.303 61.1570 7400 0.5974 0.3966 0.1161
0.3128 62.8099 7600 0.5845 0.3982 0.1169
0.2936 64.4628 7800 0.5694 0.4043 0.1172
0.2951 66.1157 8000 0.5751 0.4054 0.1195
0.2889 67.7686 8200 0.6028 0.4035 0.1189
0.2735 69.4215 8400 0.5818 0.3951 0.1169
0.2858 71.0744 8600 0.6124 0.3924 0.1184
0.2707 72.7273 8800 0.5837 0.3863 0.1147
0.2788 74.3802 9000 0.5813 0.3943 0.1168
0.2649 76.0331 9200 0.5954 0.3921 0.1171
0.2606 77.6860 9400 0.5994 0.3898 0.1161
0.2698 79.3388 9600 0.5999 0.3921 0.1164
0.2529 80.9917 9800 0.5921 0.3917 0.1171
0.2504 82.6446 10000 0.5949 0.3901 0.1168
0.2618 84.2975 10200 0.5993 0.3970 0.1181
0.2549 85.9504 10400 0.6138 0.3936 0.1170
0.2529 87.6033 10600 0.6049 0.3890 0.1165
0.2448 89.2562 10800 0.6051 0.3882 0.1164
0.2461 90.9091 11000 0.6089 0.3913 0.1169
0.245 92.5620 11200 0.6056 0.3878 0.1172
0.2423 94.2149 11400 0.6094 0.3821 0.1151
0.2423 95.8678 11600 0.6002 0.3863 0.1151
0.2364 97.5207 11800 0.6006 0.3844 0.1155
0.2427 99.1736 12000 0.6054 0.3871 0.1165

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.4.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
965M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for Lguyogiro/wav2vec2-large-mms-1b-nhi-adapterft-ilv_fold1

Finetuned
(254)
this model
Finetunes
1 model

Space using Lguyogiro/wav2vec2-large-mms-1b-nhi-adapterft-ilv_fold1 1

Evaluation results