KcELECTRA-small-v2022-finetuned-in-vehicle

This model is a fine-tuned version of beomi/KcELECTRA-small-v2022 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5573
  • Accuracy: 0.8908
  • F1: 0.8752

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
3.3864 1.0 150 3.3222 0.0992 0.0179
3.2362 2.0 300 3.0647 0.2342 0.1422
2.9257 3.0 450 2.7001 0.3467 0.2377
2.5953 4.0 600 2.3780 0.46 0.3409
2.3033 5.0 750 2.1041 0.5025 0.3911
2.0477 6.0 900 1.8675 0.5583 0.4585
1.8309 7.0 1050 1.6711 0.6167 0.5354
1.6455 8.0 1200 1.5126 0.6667 0.5924
1.4883 9.0 1350 1.3677 0.7325 0.6660
1.3473 10.0 1500 1.2435 0.7542 0.6914
1.23 11.0 1650 1.1460 0.7517 0.6911
1.1299 12.0 1800 1.0577 0.7792 0.7251
1.0437 13.0 1950 0.9860 0.7908 0.7397
0.9683 14.0 2100 0.9219 0.8092 0.7625
0.8973 15.0 2250 0.8622 0.8342 0.8028
0.8417 16.0 2400 0.8129 0.8408 0.8122
0.7891 17.0 2550 0.7719 0.85 0.8264
0.743 18.0 2700 0.7323 0.8583 0.8353
0.7037 19.0 2850 0.7005 0.8583 0.8341
0.6715 20.0 3000 0.6696 0.8717 0.8494
0.6396 21.0 3150 0.6469 0.8767 0.8546
0.6117 22.0 3300 0.6285 0.8808 0.8613
0.5897 23.0 3450 0.6137 0.88 0.8618
0.5684 24.0 3600 0.5956 0.88 0.8604
0.5522 25.0 3750 0.5851 0.8808 0.8622
0.5429 26.0 3900 0.5741 0.8867 0.8697
0.53 27.0 4050 0.5672 0.8892 0.8730
0.5234 28.0 4200 0.5616 0.8892 0.8733
0.5184 29.0 4350 0.5580 0.89 0.8738
0.5138 30.0 4500 0.5573 0.8908 0.8752

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
36
Safetensors
Model size
16.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.