Zhihui_LLM_Embedding
Model Introduction
Zhihui_LLM_Embedding is an embedding model specifically designed to enhance Chinese text retrieval capabilities. It is built on a 7B LLM and enhanced bidirectional attention mechanism to improved contextual understanding. The model is trained on an extensive corpus from various fields within an extremely large batch. Zhihui_LLM_Embedding excels in retrieval tasks, ranking 1st position on the C-MTEB leaderboard with a leading performance score of 76.74 as of June 25, 2024.
Optimization points
- Data source enhancement: Leverages the knowledge of LLMs through three types of distillation methods.(GPT3.5 & GPT4)
- Data Refinement: LLM scores candidate positive passages to select the most relevant examples.
- Query Rewriting: LLM generates queries that can be answered by positive documents but are unrelated to negatives, thus enhancing the query's quality and diversity.
- Query Expansion: Queries are expanded based on multiple topics for long documents.
- Negative example mining: Use multiple methods and different ranges of negative selection to mine hard negative examples.
- Improved Contrastive Loss: Design a novel InfoNCE loss assigns higher weights to the harder negative examples to improve the fine-grained feature representation of the model.
- Bidirectional-attention: Remove the causal attention of LLMs during contrastive training of decoder-only LLM to produce rich contextualized representations.
- Training efficiency: Using Gradient Cache to scale contrastive learning batches beyond GPU memory constraints allows the model to learn from more challenging negative examples.
- Others: Dataset-Homogenous Batching、cross-batch negative sampling
Model Details
- Base Decoder-only LLM: gte-Qwen2-7B-instruct
- Pooling Methods: Last token
- Embedding Dimension: 3584
Usage
Requirements
transformers>=4.40.2
flash_attn>=2.5.8
sentence-transformers>=2.7.0
How to use
Here is an example of how to encode queries and passages using Huggingface-transformer and Sentence-transformer.
Usage (HuggingFace Transformers)
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery: {query}'
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = [
get_detailed_instruct(task, "国家法定节假日共多少天"),
get_detailed_instruct(task, "如何查看好友申请")
]
documents = [
"一年国家法定节假日为11天。根据公布的国家法定节假日调整方案,调整的主要内容包括:元旦放假1天不变;春节放假3天,放假时间为农历正月初一、初二、初三;“五一”国际劳动节1天不变;“十一”国庆节放假3天;清明节、端午节、中秋节增设为国家法定节假日,各放假1天(农历节日如遇闰月,以第一个月为休假日)。3、允许周末上移下错,与法定节假日形成连休。",
"这个直接去我的QQ中心不就好了么那里可以查到 我的好友单向好友好友恢复、 以及好友申请 啊可以是你加别人的 或 别人加你的都可以查得到QQ空间里 这个没注意 要有的话也会在你进空间的时候会提示你的QQ 空间里 上面消息 就可以看见了!望采纳!谢谢这个直接去我的QQ中心不就好了么那里可以查到 我的好友单向好友好友恢复、 以及好友申请 啊可以是你加别人的 或 别人加你的都可以查得到",
]
input_texts = queries + documents
tokenizer = AutoTokenizer.from_pretrained('Lenovo-Zhihui/Zhihui_LLM_Embedding', trust_remote_code=True)
model = AutoModel.from_pretrained('Lenovo-Zhihui/Zhihui_LLM_Embedding', trust_remote_code=True)
max_length = 512
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T)
print(scores.tolist())
Usage (Sentence-Transformers)
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Lenovo-Zhihui/Zhihui_LLM_Embedding", trust_remote_code=True)
model.max_seq_length = 512
# 数据来源DuRetrieval https://huggingface.co/datasets/C-MTEB/DuRetrieval
queries = [
"国家法定节假日共多少天",
"如何查看好友申请",
]
documents = [
"一年国家法定节假日为11天。根据公布的国家法定节假日调整方案,调整的主要内容包括:元旦放假1天不变;春节放假3天,放假时间为农历正月初一、初二、初三;“五一”国际劳动节1天不变;“十一”国庆节放假3天;清明节、端午节、中秋节增设为国家法定节假日,各放假1天(农历节日如遇闰月,以第一个月为休假日)。3、允许周末上移下错,与法定节假日形成连休。",
"这个直接去我的QQ中心不就好了么那里可以查到 我的好友单向好友好友恢复、 以及好友申请 啊可以是你加别人的 或 别人加你的都可以查得到QQ空间里 这个没注意 要有的话也会在你进空间的时候会提示你的QQ 空间里 上面消息 就可以看见了!望采纳!谢谢这个直接去我的QQ中心不就好了么那里可以查到 我的好友单向好友好友恢复、 以及好友申请 啊可以是你加别人的 或 别人加你的都可以查得到",
]
query_embeddings = model.encode(queries, prompt_name="query", normalize_embeddings=True)
document_embeddings = model.encode(documents, normalize_embeddings=True)
scores = (query_embeddings @ document_embeddings.T)
print(scores.tolist())
Reproduce our results(C-MTEB):
Check out scripts/eval_mteb.py to reproduce evaluation results on C-MTEB benchmark.
Model | T2Retrieval | MMarcoRetrieval | DuRetrieval | CovidRetrieval | CmedqaRetrieval | EcomRetrieval | MedicalRetrieval | VideoRetrieval | Avg |
---|---|---|---|---|---|---|---|---|---|
Zhihui_LLM_Embedding | 88.30 | 84.77 | 91.34 | 84.39 | 48.69 | 71.96 | 65.19 | 79.31 | 76.74 |
zpoint_large_embedding_zh | 83.81 | 82.38 | 89.23 | 89.14 | 47.16 | 70.74 | 68.14 | 80.26 | 76.36 |
gte-Qwen2-7B-instruct | 87.73 | 85.16 | 87.44 | 83.65 | 48.69 | 71.15 | 65.59 | 78.84 | 76.03 |
360Zhinao-search | 87.12 | 83.32 | 87.57 | 85.02 | 46.73 | 68.9 | 63.69 | 78.09 | 75.06 |
AGE_Hybrid | 86.88 | 80.65 | 89.28 | 83.66 | 47.26 | 69.28 | 65.94 | 76.79 | 74.97 |
- Downloads last month
- 156
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Spaces using Lenovo-Zhihui/Zhihui_LLM_Embedding 2
Evaluation results
- map_at_1 on MTEB CmedqaRetrievalself-reported29.012
- map_at_10 on MTEB CmedqaRetrievalself-reported41.998
- map_at_100 on MTEB CmedqaRetrievalself-reported43.821
- map_at_1000 on MTEB CmedqaRetrievalself-reported43.924
- map_at_3 on MTEB CmedqaRetrievalself-reported37.804
- map_at_5 on MTEB CmedqaRetrievalself-reported40.025
- mrr_at_1 on MTEB CmedqaRetrievalself-reported43.536
- mrr_at_10 on MTEB CmedqaRetrievalself-reported51.413
- mrr_at_100 on MTEB CmedqaRetrievalself-reported52.329
- mrr_at_1000 on MTEB CmedqaRetrievalself-reported52.366