Wav2Vec2_xls_r_openslr_Hi_V2
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the Harveenchadha/indic-voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.3184
- Wer: 0.3104
- Cer: 0.0958
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 12
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
---|---|---|---|---|---|
7.1097 | 0.48 | 300 | 0.9965 | 3.3989 | 1.0 |
3.0235 | 0.96 | 600 | 0.3163 | 1.3183 | 0.7977 |
1.1419 | 1.44 | 900 | 0.1913 | 0.6416 | 0.5543 |
0.8242 | 1.92 | 1200 | 0.1608 | 0.5063 | 0.4804 |
0.6876 | 2.56 | 1600 | 0.1387 | 0.4401 | 0.4280 |
0.5868 | 3.21 | 2000 | 0.1249 | 0.3940 | 0.3907 |
0.5285 | 3.85 | 2400 | 0.1200 | 0.3661 | 0.3763 |
0.5 | 4.49 | 2800 | 0.3528 | 0.3610 | 0.1136 |
0.4538 | 5.13 | 3200 | 0.3403 | 0.3485 | 0.1086 |
0.4165 | 5.77 | 3600 | 0.3335 | 0.3439 | 0.1062 |
0.3989 | 6.41 | 4000 | 0.3264 | 0.3340 | 0.1036 |
0.3679 | 7.05 | 4400 | 0.3256 | 0.3287 | 0.1013 |
0.3517 | 7.69 | 4800 | 0.3212 | 0.3223 | 0.1002 |
0.3357 | 8.33 | 5200 | 0.3173 | 0.3196 | 0.0986 |
0.3225 | 8.97 | 5600 | 0.3142 | 0.3177 | 0.0985 |
0.3057 | 9.62 | 6000 | 0.3199 | 0.3156 | 0.0975 |
0.2972 | 10.26 | 6400 | 0.3139 | 0.3128 | 0.0967 |
0.2881 | 10.9 | 6800 | 0.3184 | 0.3107 | 0.0957 |
0.2791 | 11.54 | 7200 | 0.3184 | 0.3104 | 0.0958 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.