Edit model card

LazarusNLP/IndoNanoT5-base-Liputan6-Canonical

This model is a fine-tuned version of LazarusNLP/IndoNanoT5-base on the indonlg dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1194
  • Rouge1: 0.3976
  • Rouge2: 0.2229
  • Rougel: 0.3346
  • Rougelsum: 0.3345
  • Gen Len: 43.3808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.9693 1.0 24236 1.3245 0.3082 0.1585 0.2687 0.2688 18.9956
0.9338 2.0 48472 1.2759 0.3105 0.159 0.2705 0.2706 18.9985
0.8632 3.0 72708 1.2698 0.3094 0.1586 0.2701 0.2702 18.9995
0.8257 4.0 96944 1.2631 0.312 0.1603 0.2716 0.2715 18.9993
0.7789 5.0 121180 1.2642 0.3149 0.1625 0.2748 0.2747 18.9998
0.7595 6.0 145416 1.2587 0.3202 0.1658 0.279 0.2791 18.9995
0.7343 7.0 169652 1.2644 0.3183 0.1647 0.2773 0.2773 18.9996
0.7165 8.0 193888 1.2635 0.3141 0.1605 0.2732 0.2732 18.9993
0.6697 9.0 218124 1.2856 0.316 0.162 0.275 0.275 18.9998
0.6729 10.0 242360 1.2809 0.3195 0.164 0.2775 0.2776 18.9992
0.6471 11.0 266596 1.2833 0.3185 0.1636 0.2769 0.277 18.9982

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
3
Safetensors
Model size
248M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for LazarusNLP/IndoNanoT5-base-Liputan6-Canonical

Finetuned
(53)
this model

Dataset used to train LazarusNLP/IndoNanoT5-base-Liputan6-Canonical

Collection including LazarusNLP/IndoNanoT5-base-Liputan6-Canonical

Evaluation results