SPIE_MULTICLASS_CHINA_1_0

This model is a fine-tuned version of Visual-Attention-Network/van-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1031
  • Accuracy: 0.965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 0
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4684 0.9886 65 0.3592 0.89
0.22 1.9924 131 0.1755 0.9425
0.1846 2.9962 197 0.1364 0.9633
0.1452 4.0 263 0.1289 0.9567
0.1353 4.9430 325 0.1031 0.965

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
2
Safetensors
Model size
3.86M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for LaLegumbreArtificial/SPIE_MULTICLASS_CHINA_1_0

Finetuned
(14)
this model