Edit model card

marco_model

This model is a fine-tuned version of facebook/detr-resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3925
  • Map: 0.7574
  • Map 50: 0.929
  • Map 75: 0.884
  • Map Small: -1.0
  • Map Medium: 0.6668
  • Map Large: 0.7845
  • Mar 1: 0.1077
  • Mar 10: 0.7532
  • Mar 100: 0.8489
  • Mar Small: -1.0
  • Mar Medium: 0.8074
  • Mar Large: 0.8615
  • Map Per Class: -1.0
  • Mar 100 Per Class: -1.0
  • Classes: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Per Class Mar 100 Per Class Classes
1.8485 1.0 9 2.0519 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
1.4965 2.0 18 1.4544 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
1.3577 3.0 27 1.3521 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
1.2729 4.0 36 1.2400 0.0077 0.0281 0.004 -1.0 0.0158 0.0058 0.0039 0.009 0.009 -1.0 0.0148 0.0073 -1.0 -1.0 0
1.1613 5.0 45 1.2042 0.0066 0.0099 0.0099 -1.0 0.0079 0.0059 0.006 0.006 0.006 -1.0 0.0148 0.0034 -1.0 -1.0 0
1.1631 6.0 54 1.1257 0.0235 0.0297 0.0229 -1.0 0.0139 0.0274 0.0219 0.0219 0.0219 -1.0 0.0167 0.0235 -1.0 -1.0 0
1.1196 7.0 63 1.1354 0.0231 0.0297 0.0297 -1.0 0.031 0.0234 0.0172 0.021 0.021 -1.0 0.0315 0.0179 -1.0 -1.0 0
1.123 8.0 72 1.0910 0.023 0.0297 0.0297 -1.0 0.0314 0.0168 0.0142 0.0176 0.0176 -1.0 0.0315 0.0134 -1.0 -1.0 0
1.0342 9.0 81 1.0235 0.0576 0.0748 0.0748 -1.0 0.0601 0.0618 0.0421 0.0622 0.0622 -1.0 0.0593 0.0631 -1.0 -1.0 0
1.0549 10.0 90 1.1559 0.0366 0.0495 0.0495 -1.0 0.0609 0.0297 0.0155 0.0352 0.0352 -1.0 0.0593 0.0279 -1.0 -1.0 0
0.9125 11.0 99 0.9385 0.1832 0.2508 0.2184 -1.0 0.2598 0.1648 0.0691 0.2189 0.2253 -1.0 0.3111 0.1994 -1.0 -1.0 0
0.8747 12.0 108 0.9022 0.3659 0.5151 0.4412 -1.0 0.3361 0.394 0.0824 0.4519 0.5056 -1.0 0.5481 0.4927 -1.0 -1.0 0
0.7734 13.0 117 0.7992 0.3737 0.5225 0.4491 -1.0 0.3209 0.3989 0.0828 0.4468 0.4605 -1.0 0.4444 0.4654 -1.0 -1.0 0
0.9409 14.0 126 0.7235 0.474 0.6527 0.5714 -1.0 0.3893 0.5149 0.0974 0.5451 0.5798 -1.0 0.5259 0.5961 -1.0 -1.0 0
0.6904 15.0 135 0.6478 0.5892 0.7933 0.7054 -1.0 0.4855 0.6278 0.0948 0.6292 0.7236 -1.0 0.6778 0.7374 -1.0 -1.0 0
0.6725 16.0 144 0.5890 0.6553 0.8521 0.7901 -1.0 0.5227 0.7068 0.0953 0.6734 0.7725 -1.0 0.687 0.7983 -1.0 -1.0 0
0.6808 17.0 153 0.5885 0.6474 0.8739 0.7781 -1.0 0.5653 0.6778 0.0948 0.6476 0.7867 -1.0 0.7537 0.7966 -1.0 -1.0 0
0.4056 18.0 162 0.5272 0.6694 0.8891 0.8089 -1.0 0.5952 0.697 0.0944 0.679 0.8013 -1.0 0.7741 0.8095 -1.0 -1.0 0
0.5985 19.0 171 0.5146 0.655 0.8835 0.7829 -1.0 0.5655 0.6914 0.0966 0.6738 0.7914 -1.0 0.7537 0.8028 -1.0 -1.0 0
0.395 20.0 180 0.5012 0.6867 0.8954 0.8308 -1.0 0.5623 0.7287 0.0987 0.6742 0.806 -1.0 0.7537 0.8218 -1.0 -1.0 0
0.5581 21.0 189 0.4747 0.7079 0.9051 0.8362 -1.0 0.5806 0.7501 0.094 0.7 0.8227 -1.0 0.7926 0.8318 -1.0 -1.0 0
0.3999 22.0 198 0.4860 0.7029 0.9115 0.8551 -1.0 0.6319 0.7286 0.1004 0.6948 0.812 -1.0 0.7815 0.8212 -1.0 -1.0 0
0.4602 23.0 207 0.4910 0.6976 0.8884 0.8222 -1.0 0.6346 0.7229 0.1017 0.6983 0.8009 -1.0 0.7889 0.8045 -1.0 -1.0 0
0.4216 24.0 216 0.4817 0.7081 0.902 0.8552 -1.0 0.5966 0.7483 0.1 0.709 0.8176 -1.0 0.7796 0.8291 -1.0 -1.0 0
0.4984 25.0 225 0.4645 0.7113 0.9192 0.8414 -1.0 0.6434 0.7322 0.1056 0.7155 0.8004 -1.0 0.7519 0.8151 -1.0 -1.0 0
0.6411 26.0 234 0.4574 0.712 0.9219 0.8573 -1.0 0.6225 0.7431 0.1013 0.706 0.8189 -1.0 0.7944 0.8263 -1.0 -1.0 0
0.4605 27.0 243 0.4536 0.7152 0.9188 0.8555 -1.0 0.6354 0.7416 0.103 0.7099 0.8219 -1.0 0.8019 0.8279 -1.0 -1.0 0
0.4985 28.0 252 0.4349 0.7105 0.9045 0.8509 -1.0 0.6036 0.7465 0.1017 0.721 0.8159 -1.0 0.7407 0.8385 -1.0 -1.0 0
0.3637 29.0 261 0.4239 0.7218 0.9085 0.8706 -1.0 0.5929 0.7671 0.1043 0.7343 0.8176 -1.0 0.7185 0.8475 -1.0 -1.0 0
0.3068 30.0 270 0.4442 0.7149 0.9153 0.8518 -1.0 0.6273 0.7437 0.1034 0.7202 0.8227 -1.0 0.7926 0.8318 -1.0 -1.0 0
0.3456 31.0 279 0.4668 0.7161 0.9101 0.8587 -1.0 0.6638 0.7374 0.1039 0.7189 0.8129 -1.0 0.7722 0.8251 -1.0 -1.0 0
0.437 32.0 288 0.4049 0.7589 0.9395 0.8984 -1.0 0.6825 0.7851 0.1034 0.7391 0.8455 -1.0 0.8037 0.8581 -1.0 -1.0 0
0.3444 33.0 297 0.4229 0.747 0.9414 0.8875 -1.0 0.6868 0.7668 0.1043 0.7266 0.8288 -1.0 0.7889 0.8408 -1.0 -1.0 0
0.3523 34.0 306 0.4203 0.7474 0.9398 0.8744 -1.0 0.6821 0.7687 0.1077 0.7343 0.8305 -1.0 0.7963 0.8408 -1.0 -1.0 0
0.2629 35.0 315 0.4216 0.7449 0.928 0.8813 -1.0 0.6819 0.7653 0.1094 0.7361 0.8313 -1.0 0.7778 0.8475 -1.0 -1.0 0
0.3533 36.0 324 0.4698 0.7009 0.8817 0.8321 -1.0 0.638 0.7228 0.0974 0.709 0.8185 -1.0 0.7926 0.8263 -1.0 -1.0 0
0.2833 37.0 333 0.4804 0.7025 0.8904 0.8546 -1.0 0.6607 0.718 0.0996 0.6983 0.8137 -1.0 0.7944 0.8196 -1.0 -1.0 0
0.3656 38.0 342 0.4546 0.7221 0.9065 0.8543 -1.0 0.6382 0.7488 0.1039 0.727 0.8193 -1.0 0.7593 0.8374 -1.0 -1.0 0
0.4347 39.0 351 0.4096 0.7362 0.905 0.8617 -1.0 0.6388 0.7679 0.112 0.7365 0.8343 -1.0 0.7667 0.8547 -1.0 -1.0 0
0.3386 40.0 360 0.4118 0.7517 0.9218 0.8883 -1.0 0.6665 0.777 0.1021 0.7416 0.8468 -1.0 0.8019 0.8603 -1.0 -1.0 0
0.2718 41.0 369 0.4035 0.7532 0.9305 0.8954 -1.0 0.6756 0.7727 0.109 0.7425 0.8429 -1.0 0.8093 0.8531 -1.0 -1.0 0
0.2767 42.0 378 0.4029 0.7598 0.9324 0.8973 -1.0 0.6522 0.7911 0.1112 0.7442 0.8446 -1.0 0.7796 0.8642 -1.0 -1.0 0
0.3407 43.0 387 0.4037 0.7574 0.9348 0.8848 -1.0 0.6612 0.7855 0.1086 0.7416 0.8433 -1.0 0.7852 0.8609 -1.0 -1.0 0
0.2914 44.0 396 0.3938 0.7646 0.9385 0.9041 -1.0 0.6736 0.7913 0.109 0.7455 0.8442 -1.0 0.787 0.8615 -1.0 -1.0 0
0.2816 45.0 405 0.3961 0.7667 0.9377 0.8954 -1.0 0.671 0.794 0.1064 0.7519 0.8476 -1.0 0.7963 0.8631 -1.0 -1.0 0
0.2724 46.0 414 0.4053 0.754 0.9263 0.8842 -1.0 0.6651 0.7787 0.106 0.7472 0.8378 -1.0 0.7778 0.8559 -1.0 -1.0 0
0.2173 47.0 423 0.4031 0.7515 0.9222 0.879 -1.0 0.653 0.7808 0.106 0.7442 0.8395 -1.0 0.7815 0.857 -1.0 -1.0 0
0.3299 48.0 432 0.4073 0.7563 0.9291 0.8775 -1.0 0.662 0.7839 0.1069 0.7498 0.8442 -1.0 0.7963 0.8587 -1.0 -1.0 0
0.326 49.0 441 0.3962 0.7601 0.929 0.8834 -1.0 0.6728 0.7868 0.1073 0.7515 0.8515 -1.0 0.8093 0.8642 -1.0 -1.0 0
0.267 50.0 450 0.3949 0.7592 0.9284 0.8917 -1.0 0.6737 0.7834 0.1064 0.7506 0.8506 -1.0 0.8111 0.8626 -1.0 -1.0 0
0.3073 51.0 459 0.3979 0.754 0.9278 0.8833 -1.0 0.6652 0.7805 0.1064 0.7451 0.8451 -1.0 0.8056 0.857 -1.0 -1.0 0
0.3166 52.0 468 0.3995 0.7545 0.9279 0.8822 -1.0 0.6645 0.78 0.106 0.7446 0.8446 -1.0 0.8074 0.8559 -1.0 -1.0 0
0.2635 53.0 477 0.3957 0.7554 0.9279 0.8826 -1.0 0.6605 0.7836 0.1073 0.7468 0.8464 -1.0 0.8037 0.8592 -1.0 -1.0 0
0.2663 54.0 486 0.3942 0.7556 0.9273 0.8819 -1.0 0.6625 0.7831 0.1073 0.7524 0.8476 -1.0 0.8037 0.8609 -1.0 -1.0 0
0.3247 55.0 495 0.3940 0.7574 0.9272 0.8819 -1.0 0.6688 0.7832 0.1073 0.7536 0.8494 -1.0 0.8093 0.8615 -1.0 -1.0 0
0.2399 56.0 504 0.3933 0.7575 0.9275 0.8825 -1.0 0.6671 0.7836 0.1073 0.7532 0.8494 -1.0 0.8093 0.8615 -1.0 -1.0 0
0.3087 57.0 513 0.3929 0.7591 0.929 0.8839 -1.0 0.6682 0.7855 0.1077 0.7536 0.8498 -1.0 0.8093 0.862 -1.0 -1.0 0
0.2753 58.0 522 0.3926 0.7575 0.929 0.884 -1.0 0.6667 0.7843 0.1077 0.7532 0.8489 -1.0 0.8074 0.8615 -1.0 -1.0 0
0.2291 59.0 531 0.3925 0.7574 0.929 0.8839 -1.0 0.6667 0.7845 0.1077 0.7532 0.8489 -1.0 0.8074 0.8615 -1.0 -1.0 0
0.2809 60.0 540 0.3925 0.7574 0.929 0.884 -1.0 0.6668 0.7845 0.1077 0.7532 0.8489 -1.0 0.8074 0.8615 -1.0 -1.0 0

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
34
Safetensors
Model size
41.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for LLyq/marco_model

Finetuned
(446)
this model