t5_recommendation_sports_equipment_english

This model is a fine-tuned version of t5-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4554
  • Rouge1: 55.5556
  • Rouge2: 47.6190
  • Rougel: 55.9524
  • Rougelsum: 55.5556
  • Gen Len: 3.9048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 0.96 6 6.7375 8.7145 0.9524 8.7598 8.5557 19.0
No log 1.96 12 2.8089 23.3333 9.5238 23.3333 23.3333 3.1429
No log 2.96 18 0.9394 9.5238 4.7619 9.5238 9.5238 3.1905
No log 3.96 24 0.6679 32.6190 14.2857 33.3333 32.0635 3.5714
No log 4.96 30 0.6736 25.2381 9.5238 25.3175 25.5556 4.2381
No log 5.96 36 0.6658 37.6190 23.8095 38.4127 37.9365 4.0476
No log 6.96 42 0.6460 45.5556 33.3333 46.6667 45.2381 3.8571
No log 7.96 48 0.5596 50.7937 42.8571 52.3810 50.7937 4.0
No log 8.96 54 0.5082 55.5556 47.6190 55.9524 55.5556 3.9524
No log 9.96 60 0.4554 55.5556 47.6190 55.9524 55.5556 3.9048

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.0+cu117
  • Datasets 2.8.0
  • Tokenizers 0.13.3
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.