answerdotai-ModernBERT-large_20241230-093521
This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1709
- Precision@0.01: 0.9292
- Recall@0.01: 0.9890
- F1@0.01: 0.9581
- Accuracy@0.01: 0.9627
- Precision@0.02: 0.9339
- Recall@0.02: 0.9873
- F1@0.02: 0.9599
- Accuracy@0.02: 0.9644
- Precision@0.03: 0.9363
- Recall@0.03: 0.9867
- F1@0.03: 0.9608
- Accuracy@0.03: 0.9653
- Precision@0.04: 0.9374
- Recall@0.04: 0.9866
- F1@0.04: 0.9614
- Accuracy@0.04: 0.9658
- Precision@0.05: 0.9379
- Recall@0.05: 0.9865
- F1@0.05: 0.9616
- Accuracy@0.05: 0.9660
- Precision@0.06: 0.9382
- Recall@0.06: 0.9862
- F1@0.06: 0.9616
- Accuracy@0.06: 0.9660
- Precision@0.07: 0.9388
- Recall@0.07: 0.9859
- F1@0.07: 0.9617
- Accuracy@0.07: 0.9662
- Precision@0.08: 0.9393
- Recall@0.08: 0.9859
- F1@0.08: 0.9620
- Accuracy@0.08: 0.9664
- Precision@0.09: 0.9395
- Recall@0.09: 0.9858
- F1@0.09: 0.9621
- Accuracy@0.09: 0.9665
- Precision@0.1: 0.9397
- Recall@0.1: 0.9857
- F1@0.1: 0.9622
- Accuracy@0.1: 0.9666
- Precision@0.11: 0.9400
- Recall@0.11: 0.9856
- F1@0.11: 0.9623
- Accuracy@0.11: 0.9667
- Precision@0.12: 0.9403
- Recall@0.12: 0.9856
- F1@0.12: 0.9624
- Accuracy@0.12: 0.9668
- Precision@0.13: 0.9406
- Recall@0.13: 0.9855
- F1@0.13: 0.9625
- Accuracy@0.13: 0.9669
- Precision@0.14: 0.9407
- Recall@0.14: 0.9855
- F1@0.14: 0.9626
- Accuracy@0.14: 0.9670
- Precision@0.15: 0.9408
- Recall@0.15: 0.9855
- F1@0.15: 0.9626
- Accuracy@0.15: 0.9670
- Precision@0.16: 0.9411
- Recall@0.16: 0.9855
- F1@0.16: 0.9628
- Accuracy@0.16: 0.9671
- Precision@0.17: 0.9414
- Recall@0.17: 0.9853
- F1@0.17: 0.9628
- Accuracy@0.17: 0.9672
- Precision@0.18: 0.9415
- Recall@0.18: 0.9852
- F1@0.18: 0.9628
- Accuracy@0.18: 0.9672
- Precision@0.19: 0.9416
- Recall@0.19: 0.9850
- F1@0.19: 0.9628
- Accuracy@0.19: 0.9672
- Precision@0.2: 0.9416
- Recall@0.2: 0.9850
- F1@0.2: 0.9628
- Accuracy@0.2: 0.9672
- Precision@0.21: 0.9416
- Recall@0.21: 0.9849
- F1@0.21: 0.9628
- Accuracy@0.21: 0.9671
- Precision@0.22: 0.9419
- Recall@0.22: 0.9849
- F1@0.22: 0.9629
- Accuracy@0.22: 0.9673
- Precision@0.23: 0.9421
- Recall@0.23: 0.9849
- F1@0.23: 0.9630
- Accuracy@0.23: 0.9674
- Precision@0.24: 0.9421
- Recall@0.24: 0.9849
- F1@0.24: 0.9630
- Accuracy@0.24: 0.9674
- Precision@0.25: 0.9422
- Recall@0.25: 0.9846
- F1@0.25: 0.9629
- Accuracy@0.25: 0.9673
- Precision@0.26: 0.9422
- Recall@0.26: 0.9846
- F1@0.26: 0.9629
- Accuracy@0.26: 0.9673
- Precision@0.27: 0.9423
- Recall@0.27: 0.9846
- F1@0.27: 0.9629
- Accuracy@0.27: 0.9673
- Precision@0.28: 0.9423
- Recall@0.28: 0.9845
- F1@0.28: 0.9629
- Accuracy@0.28: 0.9673
- Precision@0.29: 0.9424
- Recall@0.29: 0.9844
- F1@0.29: 0.9629
- Accuracy@0.29: 0.9673
- Precision@0.3: 0.9425
- Recall@0.3: 0.9843
- F1@0.3: 0.9629
- Accuracy@0.3: 0.9673
- Precision@0.31: 0.9425
- Recall@0.31: 0.9843
- F1@0.31: 0.9629
- Accuracy@0.31: 0.9673
- Precision@0.32: 0.9428
- Recall@0.32: 0.9841
- F1@0.32: 0.9630
- Accuracy@0.32: 0.9674
- Precision@0.33: 0.9428
- Recall@0.33: 0.9840
- F1@0.33: 0.9630
- Accuracy@0.33: 0.9674
- Precision@0.34: 0.9429
- Recall@0.34: 0.9839
- F1@0.34: 0.9630
- Accuracy@0.34: 0.9674
- Precision@0.35: 0.9431
- Recall@0.35: 0.9838
- F1@0.35: 0.9630
- Accuracy@0.35: 0.9674
- Precision@0.36: 0.9431
- Recall@0.36: 0.9838
- F1@0.36: 0.9631
- Accuracy@0.36: 0.9674
- Precision@0.37: 0.9432
- Recall@0.37: 0.9837
- F1@0.37: 0.9631
- Accuracy@0.37: 0.9674
- Precision@0.38: 0.9432
- Recall@0.38: 0.9837
- F1@0.38: 0.9631
- Accuracy@0.38: 0.9674
- Precision@0.39: 0.9432
- Recall@0.39: 0.9837
- F1@0.39: 0.9631
- Accuracy@0.39: 0.9674
- Precision@0.4: 0.9433
- Recall@0.4: 0.9836
- F1@0.4: 0.9631
- Accuracy@0.4: 0.9674
- Precision@0.41: 0.9433
- Recall@0.41: 0.9835
- F1@0.41: 0.9630
- Accuracy@0.41: 0.9674
- Precision@0.42: 0.9433
- Recall@0.42: 0.9835
- F1@0.42: 0.9630
- Accuracy@0.42: 0.9674
- Precision@0.43: 0.9434
- Recall@0.43: 0.9834
- F1@0.43: 0.9630
- Accuracy@0.43: 0.9674
- Precision@0.44: 0.9435
- Recall@0.44: 0.9834
- F1@0.44: 0.9630
- Accuracy@0.44: 0.9674
- Precision@0.45: 0.9436
- Recall@0.45: 0.9832
- F1@0.45: 0.9630
- Accuracy@0.45: 0.9674
- Precision@0.46: 0.9438
- Recall@0.46: 0.9832
- F1@0.46: 0.9631
- Accuracy@0.46: 0.9675
- Precision@0.47: 0.9438
- Recall@0.47: 0.9831
- F1@0.47: 0.9631
- Accuracy@0.47: 0.9675
- Precision@0.48: 0.9440
- Recall@0.48: 0.9831
- F1@0.48: 0.9632
- Accuracy@0.48: 0.9676
- Precision@0.49: 0.9442
- Recall@0.49: 0.9831
- F1@0.49: 0.9633
- Accuracy@0.49: 0.9677
- Precision@0.5: 0.9445
- Recall@0.5: 0.9830
- F1@0.5: 0.9634
- Accuracy@0.5: 0.9678
- Precision@0.51: 0.9446
- Recall@0.51: 0.9829
- F1@0.51: 0.9634
- Accuracy@0.51: 0.9678
- Precision@0.52: 0.9447
- Recall@0.52: 0.9829
- F1@0.52: 0.9634
- Accuracy@0.52: 0.9678
- Precision@0.53: 0.9448
- Recall@0.53: 0.9828
- F1@0.53: 0.9635
- Accuracy@0.53: 0.9678
- Precision@0.54: 0.9449
- Recall@0.54: 0.9827
- F1@0.54: 0.9635
- Accuracy@0.54: 0.9678
- Precision@0.55: 0.9449
- Recall@0.55: 0.9827
- F1@0.55: 0.9635
- Accuracy@0.55: 0.9678
- Precision@0.56: 0.9450
- Recall@0.56: 0.9826
- F1@0.56: 0.9635
- Accuracy@0.56: 0.9678
- Precision@0.57: 0.9451
- Recall@0.57: 0.9826
- F1@0.57: 0.9635
- Accuracy@0.57: 0.9679
- Precision@0.58: 0.9453
- Recall@0.58: 0.9826
- F1@0.58: 0.9636
- Accuracy@0.58: 0.9680
- Precision@0.59: 0.9456
- Recall@0.59: 0.9826
- F1@0.59: 0.9637
- Accuracy@0.59: 0.9681
- Precision@0.6: 0.9457
- Recall@0.6: 0.9825
- F1@0.6: 0.9637
- Accuracy@0.6: 0.9681
- Precision@0.61: 0.9457
- Recall@0.61: 0.9825
- F1@0.61: 0.9637
- Accuracy@0.61: 0.9681
- Precision@0.62: 0.9459
- Recall@0.62: 0.9824
- F1@0.62: 0.9638
- Accuracy@0.62: 0.9682
- Precision@0.63: 0.9459
- Recall@0.63: 0.9824
- F1@0.63: 0.9638
- Accuracy@0.63: 0.9682
- Precision@0.64: 0.9460
- Recall@0.64: 0.9824
- F1@0.64: 0.9639
- Accuracy@0.64: 0.9682
- Precision@0.65: 0.9461
- Recall@0.65: 0.9824
- F1@0.65: 0.9639
- Accuracy@0.65: 0.9683
- Precision@0.66: 0.9462
- Recall@0.66: 0.9822
- F1@0.66: 0.9639
- Accuracy@0.66: 0.9682
- Precision@0.67: 0.9463
- Recall@0.67: 0.9822
- F1@0.67: 0.9639
- Accuracy@0.67: 0.9683
- Precision@0.68: 0.9464
- Recall@0.68: 0.9820
- F1@0.68: 0.9639
- Accuracy@0.68: 0.9682
- Precision@0.69: 0.9464
- Recall@0.69: 0.9817
- F1@0.69: 0.9637
- Accuracy@0.69: 0.9681
- Precision@0.7: 0.9465
- Recall@0.7: 0.9817
- F1@0.7: 0.9638
- Accuracy@0.7: 0.9682
- Precision@0.71: 0.9466
- Recall@0.71: 0.9817
- F1@0.71: 0.9638
- Accuracy@0.71: 0.9682
- Precision@0.72: 0.9467
- Recall@0.72: 0.9816
- F1@0.72: 0.9639
- Accuracy@0.72: 0.9682
- Precision@0.73: 0.9467
- Recall@0.73: 0.9816
- F1@0.73: 0.9639
- Accuracy@0.73: 0.9682
- Precision@0.74: 0.9468
- Recall@0.74: 0.9815
- F1@0.74: 0.9638
- Accuracy@0.74: 0.9682
- Precision@0.75: 0.9471
- Recall@0.75: 0.9815
- F1@0.75: 0.9640
- Accuracy@0.75: 0.9684
- Precision@0.76: 0.9475
- Recall@0.76: 0.9815
- F1@0.76: 0.9642
- Accuracy@0.76: 0.9686
- Precision@0.77: 0.9476
- Recall@0.77: 0.9815
- F1@0.77: 0.9642
- Accuracy@0.77: 0.9686
- Precision@0.78: 0.9478
- Recall@0.78: 0.9813
- F1@0.78: 0.9643
- Accuracy@0.78: 0.9686
- Precision@0.79: 0.9479
- Recall@0.79: 0.9812
- F1@0.79: 0.9643
- Accuracy@0.79: 0.9686
- Precision@0.8: 0.9479
- Recall@0.8: 0.9812
- F1@0.8: 0.9643
- Accuracy@0.8: 0.9686
- Precision@0.81: 0.9480
- Recall@0.81: 0.9811
- F1@0.81: 0.9643
- Accuracy@0.81: 0.9686
- Precision@0.82: 0.9481
- Recall@0.82: 0.9809
- F1@0.82: 0.9642
- Accuracy@0.82: 0.9686
- Precision@0.83: 0.9484
- Recall@0.83: 0.9809
- F1@0.83: 0.9644
- Accuracy@0.83: 0.9687
- Precision@0.84: 0.9487
- Recall@0.84: 0.9807
- F1@0.84: 0.9644
- Accuracy@0.84: 0.9688
- Precision@0.85: 0.9489
- Recall@0.85: 0.9806
- F1@0.85: 0.9645
- Accuracy@0.85: 0.9689
- Precision@0.86: 0.9492
- Recall@0.86: 0.9805
- F1@0.86: 0.9646
- Accuracy@0.86: 0.9689
- Precision@0.87: 0.9497
- Recall@0.87: 0.9805
- F1@0.87: 0.9648
- Accuracy@0.87: 0.9692
- Precision@0.88: 0.9500
- Recall@0.88: 0.9801
- F1@0.88: 0.9648
- Accuracy@0.88: 0.9692
- Precision@0.89: 0.9502
- Recall@0.89: 0.9798
- F1@0.89: 0.9648
- Accuracy@0.89: 0.9691
- Precision@0.9: 0.9505
- Recall@0.9: 0.9797
- F1@0.9: 0.9649
- Accuracy@0.9: 0.9692
- Precision@0.91: 0.9506
- Recall@0.91: 0.9794
- F1@0.91: 0.9648
- Accuracy@0.91: 0.9692
- Precision@0.92: 0.9509
- Recall@0.92: 0.9792
- F1@0.92: 0.9649
- Accuracy@0.92: 0.9693
- Precision@0.93: 0.9519
- Recall@0.93: 0.9790
- F1@0.93: 0.9653
- Accuracy@0.93: 0.9696
- Precision@0.94: 0.9525
- Recall@0.94: 0.9782
- F1@0.94: 0.9652
- Accuracy@0.94: 0.9696
- Precision@0.95: 0.9536
- Recall@0.95: 0.9774
- F1@0.95: 0.9654
- Accuracy@0.95: 0.9697
- Precision@0.96: 0.9547
- Recall@0.96: 0.9761
- F1@0.96: 0.9653
- Accuracy@0.96: 0.9697
- Precision@0.97: 0.9565
- Recall@0.97: 0.9745
- F1@0.97: 0.9655
- Accuracy@0.97: 0.9699
- Precision@0.98: 0.9615
- Recall@0.98: 0.9707
- F1@0.98: 0.9661
- Accuracy@0.98: 0.9706
- Precision@0.99: 0.9671
- Recall@0.99: 0.9612
- F1@0.99: 0.9642
- Accuracy@0.99: 0.9692
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision@0.01 | Recall@0.01 | F1@0.01 | Accuracy@0.01 | Precision@0.02 | Recall@0.02 | F1@0.02 | Accuracy@0.02 | Precision@0.03 | Recall@0.03 | F1@0.03 | Accuracy@0.03 | Precision@0.04 | Recall@0.04 | F1@0.04 | Accuracy@0.04 | Precision@0.05 | Recall@0.05 | F1@0.05 | Accuracy@0.05 | Precision@0.06 | Recall@0.06 | F1@0.06 | Accuracy@0.06 | Precision@0.07 | Recall@0.07 | F1@0.07 | Accuracy@0.07 | Precision@0.08 | Recall@0.08 | F1@0.08 | Accuracy@0.08 | Precision@0.09 | Recall@0.09 | F1@0.09 | Accuracy@0.09 | Precision@0.1 | Recall@0.1 | F1@0.1 | Accuracy@0.1 | Precision@0.11 | Recall@0.11 | F1@0.11 | Accuracy@0.11 | Precision@0.12 | Recall@0.12 | F1@0.12 | Accuracy@0.12 | Precision@0.13 | Recall@0.13 | F1@0.13 | Accuracy@0.13 | Precision@0.14 | Recall@0.14 | F1@0.14 | Accuracy@0.14 | Precision@0.15 | Recall@0.15 | F1@0.15 | Accuracy@0.15 | Precision@0.16 | Recall@0.16 | F1@0.16 | Accuracy@0.16 | Precision@0.17 | Recall@0.17 | F1@0.17 | Accuracy@0.17 | Precision@0.18 | Recall@0.18 | F1@0.18 | Accuracy@0.18 | Precision@0.19 | Recall@0.19 | F1@0.19 | Accuracy@0.19 | Precision@0.2 | Recall@0.2 | F1@0.2 | Accuracy@0.2 | Precision@0.21 | Recall@0.21 | F1@0.21 | Accuracy@0.21 | Precision@0.22 | Recall@0.22 | F1@0.22 | Accuracy@0.22 | Precision@0.23 | Recall@0.23 | F1@0.23 | Accuracy@0.23 | Precision@0.24 | Recall@0.24 | F1@0.24 | Accuracy@0.24 | Precision@0.25 | Recall@0.25 | F1@0.25 | Accuracy@0.25 | Precision@0.26 | Recall@0.26 | F1@0.26 | Accuracy@0.26 | Precision@0.27 | Recall@0.27 | F1@0.27 | Accuracy@0.27 | Precision@0.28 | Recall@0.28 | F1@0.28 | Accuracy@0.28 | Precision@0.29 | Recall@0.29 | F1@0.29 | Accuracy@0.29 | Precision@0.3 | Recall@0.3 | F1@0.3 | Accuracy@0.3 | Precision@0.31 | Recall@0.31 | F1@0.31 | Accuracy@0.31 | Precision@0.32 | Recall@0.32 | F1@0.32 | Accuracy@0.32 | Precision@0.33 | Recall@0.33 | F1@0.33 | Accuracy@0.33 | Precision@0.34 | Recall@0.34 | F1@0.34 | Accuracy@0.34 | Precision@0.35 | Recall@0.35 | F1@0.35 | Accuracy@0.35 | Precision@0.36 | Recall@0.36 | F1@0.36 | Accuracy@0.36 | Precision@0.37 | Recall@0.37 | F1@0.37 | Accuracy@0.37 | Precision@0.38 | Recall@0.38 | F1@0.38 | Accuracy@0.38 | Precision@0.39 | Recall@0.39 | F1@0.39 | Accuracy@0.39 | Precision@0.4 | Recall@0.4 | F1@0.4 | Accuracy@0.4 | Precision@0.41 | Recall@0.41 | F1@0.41 | Accuracy@0.41 | Precision@0.42 | Recall@0.42 | F1@0.42 | Accuracy@0.42 | Precision@0.43 | Recall@0.43 | F1@0.43 | Accuracy@0.43 | Precision@0.44 | Recall@0.44 | F1@0.44 | Accuracy@0.44 | Precision@0.45 | Recall@0.45 | F1@0.45 | Accuracy@0.45 | Precision@0.46 | Recall@0.46 | F1@0.46 | Accuracy@0.46 | Precision@0.47 | Recall@0.47 | F1@0.47 | Accuracy@0.47 | Precision@0.48 | Recall@0.48 | F1@0.48 | Accuracy@0.48 | Precision@0.49 | Recall@0.49 | F1@0.49 | Accuracy@0.49 | Precision@0.5 | Recall@0.5 | F1@0.5 | Accuracy@0.5 | Precision@0.51 | Recall@0.51 | F1@0.51 | Accuracy@0.51 | Precision@0.52 | Recall@0.52 | F1@0.52 | Accuracy@0.52 | Precision@0.53 | Recall@0.53 | F1@0.53 | Accuracy@0.53 | Precision@0.54 | Recall@0.54 | F1@0.54 | Accuracy@0.54 | Precision@0.55 | Recall@0.55 | F1@0.55 | Accuracy@0.55 | Precision@0.56 | Recall@0.56 | F1@0.56 | Accuracy@0.56 | Precision@0.57 | Recall@0.57 | F1@0.57 | Accuracy@0.57 | Precision@0.58 | Recall@0.58 | F1@0.58 | Accuracy@0.58 | Precision@0.59 | Recall@0.59 | F1@0.59 | Accuracy@0.59 | Precision@0.6 | Recall@0.6 | F1@0.6 | Accuracy@0.6 | Precision@0.61 | Recall@0.61 | F1@0.61 | Accuracy@0.61 | Precision@0.62 | Recall@0.62 | F1@0.62 | Accuracy@0.62 | Precision@0.63 | Recall@0.63 | F1@0.63 | Accuracy@0.63 | Precision@0.64 | Recall@0.64 | F1@0.64 | Accuracy@0.64 | Precision@0.65 | Recall@0.65 | F1@0.65 | Accuracy@0.65 | Precision@0.66 | Recall@0.66 | F1@0.66 | Accuracy@0.66 | Precision@0.67 | Recall@0.67 | F1@0.67 | Accuracy@0.67 | Precision@0.68 | Recall@0.68 | F1@0.68 | Accuracy@0.68 | Precision@0.69 | Recall@0.69 | F1@0.69 | Accuracy@0.69 | Precision@0.7 | Recall@0.7 | F1@0.7 | Accuracy@0.7 | Precision@0.71 | Recall@0.71 | F1@0.71 | Accuracy@0.71 | Precision@0.72 | Recall@0.72 | F1@0.72 | Accuracy@0.72 | Precision@0.73 | Recall@0.73 | F1@0.73 | Accuracy@0.73 | Precision@0.74 | Recall@0.74 | F1@0.74 | Accuracy@0.74 | Precision@0.75 | Recall@0.75 | F1@0.75 | Accuracy@0.75 | Precision@0.76 | Recall@0.76 | F1@0.76 | Accuracy@0.76 | Precision@0.77 | Recall@0.77 | F1@0.77 | Accuracy@0.77 | Precision@0.78 | Recall@0.78 | F1@0.78 | Accuracy@0.78 | Precision@0.79 | Recall@0.79 | F1@0.79 | Accuracy@0.79 | Precision@0.8 | Recall@0.8 | F1@0.8 | Accuracy@0.8 | Precision@0.81 | Recall@0.81 | F1@0.81 | Accuracy@0.81 | Precision@0.82 | Recall@0.82 | F1@0.82 | Accuracy@0.82 | Precision@0.83 | Recall@0.83 | F1@0.83 | Accuracy@0.83 | Precision@0.84 | Recall@0.84 | F1@0.84 | Accuracy@0.84 | Precision@0.85 | Recall@0.85 | F1@0.85 | Accuracy@0.85 | Precision@0.86 | Recall@0.86 | F1@0.86 | Accuracy@0.86 | Precision@0.87 | Recall@0.87 | F1@0.87 | Accuracy@0.87 | Precision@0.88 | Recall@0.88 | F1@0.88 | Accuracy@0.88 | Precision@0.89 | Recall@0.89 | F1@0.89 | Accuracy@0.89 | Precision@0.9 | Recall@0.9 | F1@0.9 | Accuracy@0.9 | Precision@0.91 | Recall@0.91 | F1@0.91 | Accuracy@0.91 | Precision@0.92 | Recall@0.92 | F1@0.92 | Accuracy@0.92 | Precision@0.93 | Recall@0.93 | F1@0.93 | Accuracy@0.93 | Precision@0.94 | Recall@0.94 | F1@0.94 | Accuracy@0.94 | Precision@0.95 | Recall@0.95 | F1@0.95 | Accuracy@0.95 | Precision@0.96 | Recall@0.96 | F1@0.96 | Accuracy@0.96 | Precision@0.97 | Recall@0.97 | F1@0.97 | Accuracy@0.97 | Precision@0.98 | Recall@0.98 | F1@0.98 | Accuracy@0.98 | Precision@0.99 | Recall@0.99 | F1@0.99 | Accuracy@0.99 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1673 | 1.0 | 2436 | 0.1657 | 0.8037 | 0.9994 | 0.8909 | 0.8945 | 0.8203 | 0.9993 | 0.9010 | 0.9053 | 0.8287 | 0.9991 | 0.9060 | 0.9106 | 0.8359 | 0.9989 | 0.9101 | 0.9149 | 0.8403 | 0.9987 | 0.9127 | 0.9176 | 0.8450 | 0.9985 | 0.9153 | 0.9203 | 0.8501 | 0.9983 | 0.9183 | 0.9233 | 0.8540 | 0.9981 | 0.9204 | 0.9255 | 0.8574 | 0.9980 | 0.9224 | 0.9275 | 0.8616 | 0.9979 | 0.9247 | 0.9299 | 0.8640 | 0.9979 | 0.9261 | 0.9313 | 0.8666 | 0.9979 | 0.9276 | 0.9328 | 0.8694 | 0.9978 | 0.9291 | 0.9344 | 0.8711 | 0.9976 | 0.9301 | 0.9353 | 0.8732 | 0.9974 | 0.9312 | 0.9364 | 0.8752 | 0.9974 | 0.9323 | 0.9375 | 0.8772 | 0.9974 | 0.9335 | 0.9387 | 0.8786 | 0.9973 | 0.9342 | 0.9394 | 0.8801 | 0.9973 | 0.9350 | 0.9402 | 0.8812 | 0.9971 | 0.9356 | 0.9408 | 0.8824 | 0.9970 | 0.9362 | 0.9414 | 0.8844 | 0.9969 | 0.9373 | 0.9425 | 0.8854 | 0.9967 | 0.9378 | 0.9429 | 0.8861 | 0.9966 | 0.9381 | 0.9433 | 0.8865 | 0.9966 | 0.9383 | 0.9435 | 0.8871 | 0.9966 | 0.9387 | 0.9439 | 0.8883 | 0.9965 | 0.9393 | 0.9445 | 0.8895 | 0.9965 | 0.9400 | 0.9451 | 0.8898 | 0.9965 | 0.9401 | 0.9453 | 0.8913 | 0.9964 | 0.9409 | 0.9461 | 0.8919 | 0.9963 | 0.9412 | 0.9463 | 0.8930 | 0.9961 | 0.9418 | 0.9469 | 0.8940 | 0.9961 | 0.9423 | 0.9474 | 0.8949 | 0.9960 | 0.9427 | 0.9478 | 0.8953 | 0.9959 | 0.9429 | 0.9480 | 0.8961 | 0.9959 | 0.9434 | 0.9484 | 0.8969 | 0.9959 | 0.9438 | 0.9489 | 0.8977 | 0.9958 | 0.9442 | 0.9492 | 0.8981 | 0.9956 | 0.9443 | 0.9494 | 0.8988 | 0.9955 | 0.9447 | 0.9497 | 0.8997 | 0.9954 | 0.9451 | 0.9502 | 0.9006 | 0.9954 | 0.9456 | 0.9506 | 0.9011 | 0.9954 | 0.9459 | 0.9509 | 0.9014 | 0.9954 | 0.9461 | 0.9510 | 0.9023 | 0.9954 | 0.9466 | 0.9515 | 0.9026 | 0.9954 | 0.9467 | 0.9517 | 0.9032 | 0.9954 | 0.9471 | 0.9520 | 0.9036 | 0.9954 | 0.9473 | 0.9522 | 0.9045 | 0.9952 | 0.9477 | 0.9526 | 0.9047 | 0.9950 | 0.9477 | 0.9526 | 0.9053 | 0.9950 | 0.9480 | 0.9529 | 0.9063 | 0.9950 | 0.9486 | 0.9535 | 0.9068 | 0.9950 | 0.9489 | 0.9537 | 0.9076 | 0.9950 | 0.9493 | 0.9541 | 0.9081 | 0.9950 | 0.9495 | 0.9544 | 0.9088 | 0.9950 | 0.9499 | 0.9547 | 0.9089 | 0.9950 | 0.9500 | 0.9548 | 0.9093 | 0.9949 | 0.9502 | 0.9550 | 0.9098 | 0.9949 | 0.9504 | 0.9552 | 0.9103 | 0.9949 | 0.9507 | 0.9555 | 0.9106 | 0.9948 | 0.9508 | 0.9556 | 0.9116 | 0.9948 | 0.9514 | 0.9562 | 0.9120 | 0.9945 | 0.9515 | 0.9562 | 0.9126 | 0.9944 | 0.9517 | 0.9565 | 0.9129 | 0.9941 | 0.9518 | 0.9566 | 0.9135 | 0.9940 | 0.9521 | 0.9568 | 0.9144 | 0.9939 | 0.9525 | 0.9572 | 0.9149 | 0.9939 | 0.9527 | 0.9575 | 0.9152 | 0.9939 | 0.9529 | 0.9577 | 0.9158 | 0.9938 | 0.9532 | 0.9579 | 0.9159 | 0.9936 | 0.9532 | 0.9579 | 0.9169 | 0.9934 | 0.9536 | 0.9583 | 0.9175 | 0.9931 | 0.9538 | 0.9585 | 0.9180 | 0.9931 | 0.9541 | 0.9588 | 0.9188 | 0.9929 | 0.9544 | 0.9591 | 0.9198 | 0.9927 | 0.9549 | 0.9595 | 0.9209 | 0.9926 | 0.9554 | 0.9600 | 0.9216 | 0.9925 | 0.9557 | 0.9603 | 0.9223 | 0.9923 | 0.9560 | 0.9606 | 0.9239 | 0.9923 | 0.9569 | 0.9615 | 0.9247 | 0.9922 | 0.9573 | 0.9618 | 0.9251 | 0.9921 | 0.9575 | 0.9620 | 0.9264 | 0.9919 | 0.9580 | 0.9625 | 0.9272 | 0.9915 | 0.9583 | 0.9628 | 0.9285 | 0.9914 | 0.9589 | 0.9633 | 0.9294 | 0.9911 | 0.9593 | 0.9637 | 0.9306 | 0.9907 | 0.9597 | 0.9641 | 0.9316 | 0.9901 | 0.9599 | 0.9644 | 0.9324 | 0.9894 | 0.9600 | 0.9644 | 0.9338 | 0.9888 | 0.9605 | 0.9649 | 0.9359 | 0.9880 | 0.9612 | 0.9656 | 0.9380 | 0.9871 | 0.9619 | 0.9663 | 0.9407 | 0.9860 | 0.9628 | 0.9671 | 0.9436 | 0.9854 | 0.9640 | 0.9683 | 0.9471 | 0.9839 | 0.9652 | 0.9694 | 0.9521 | 0.9818 | 0.9667 | 0.9708 | 0.9577 | 0.9781 | 0.9678 | 0.9719 | 0.9653 | 0.9709 | 0.9681 | 0.9724 | 0.9751 | 0.9542 | 0.9645 | 0.9697 |
0.7107 | 2.0 | 4872 | 0.1609 | 0.9044 | 0.9943 | 0.9472 | 0.9522 | 0.9147 | 0.9927 | 0.9521 | 0.9570 | 0.9185 | 0.9916 | 0.9536 | 0.9584 | 0.9221 | 0.9911 | 0.9553 | 0.9600 | 0.9244 | 0.9905 | 0.9563 | 0.9610 | 0.9268 | 0.9898 | 0.9572 | 0.9618 | 0.9278 | 0.9895 | 0.9576 | 0.9622 | 0.9293 | 0.9894 | 0.9584 | 0.9629 | 0.9299 | 0.9891 | 0.9586 | 0.9631 | 0.9309 | 0.9889 | 0.9590 | 0.9635 | 0.9314 | 0.9885 | 0.9591 | 0.9637 | 0.9322 | 0.9884 | 0.9595 | 0.9640 | 0.9325 | 0.9884 | 0.9596 | 0.9641 | 0.9328 | 0.9883 | 0.9598 | 0.9643 | 0.9334 | 0.9882 | 0.9600 | 0.9645 | 0.9336 | 0.9882 | 0.9602 | 0.9646 | 0.9341 | 0.9881 | 0.9603 | 0.9648 | 0.9346 | 0.9880 | 0.9606 | 0.9650 | 0.9351 | 0.9880 | 0.9608 | 0.9652 | 0.9354 | 0.9875 | 0.9608 | 0.9652 | 0.9357 | 0.9874 | 0.9608 | 0.9653 | 0.9357 | 0.9873 | 0.9608 | 0.9653 | 0.9359 | 0.9873 | 0.9609 | 0.9654 | 0.9362 | 0.9872 | 0.9610 | 0.9655 | 0.9368 | 0.9871 | 0.9613 | 0.9657 | 0.9370 | 0.9871 | 0.9614 | 0.9658 | 0.9370 | 0.9870 | 0.9614 | 0.9658 | 0.9375 | 0.9870 | 0.9616 | 0.9660 | 0.9378 | 0.9870 | 0.9618 | 0.9662 | 0.9381 | 0.9869 | 0.9619 | 0.9663 | 0.9385 | 0.9869 | 0.9621 | 0.9665 | 0.9388 | 0.9868 | 0.9622 | 0.9666 | 0.9390 | 0.9867 | 0.9623 | 0.9666 | 0.9392 | 0.9866 | 0.9623 | 0.9667 | 0.9393 | 0.9865 | 0.9623 | 0.9667 | 0.9394 | 0.9865 | 0.9624 | 0.9667 | 0.9397 | 0.9865 | 0.9625 | 0.9669 | 0.9397 | 0.9864 | 0.9625 | 0.9668 | 0.9399 | 0.9862 | 0.9625 | 0.9668 | 0.9400 | 0.9862 | 0.9625 | 0.9669 | 0.9400 | 0.9861 | 0.9625 | 0.9669 | 0.9402 | 0.9861 | 0.9626 | 0.9670 | 0.9404 | 0.9860 | 0.9627 | 0.9670 | 0.9407 | 0.9858 | 0.9627 | 0.9671 | 0.9410 | 0.9857 | 0.9628 | 0.9672 | 0.9412 | 0.9856 | 0.9629 | 0.9672 | 0.9415 | 0.9856 | 0.9630 | 0.9674 | 0.9416 | 0.9855 | 0.9630 | 0.9674 | 0.9423 | 0.9854 | 0.9634 | 0.9677 | 0.9424 | 0.9853 | 0.9634 | 0.9677 | 0.9427 | 0.9852 | 0.9634 | 0.9678 | 0.9428 | 0.9850 | 0.9634 | 0.9678 | 0.9430 | 0.9849 | 0.9635 | 0.9678 | 0.9434 | 0.9848 | 0.9636 | 0.9679 | 0.9436 | 0.9847 | 0.9637 | 0.9680 | 0.9436 | 0.9847 | 0.9637 | 0.9680 | 0.9438 | 0.9847 | 0.9638 | 0.9681 | 0.9438 | 0.9846 | 0.9638 | 0.9681 | 0.9442 | 0.9844 | 0.9639 | 0.9682 | 0.9445 | 0.9844 | 0.9640 | 0.9683 | 0.9447 | 0.9843 | 0.9641 | 0.9684 | 0.9449 | 0.9843 | 0.9642 | 0.9685 | 0.9450 | 0.9840 | 0.9641 | 0.9684 | 0.9452 | 0.9838 | 0.9641 | 0.9684 | 0.9452 | 0.9838 | 0.9641 | 0.9684 | 0.9452 | 0.9837 | 0.9641 | 0.9684 | 0.9453 | 0.9834 | 0.9640 | 0.9683 | 0.9453 | 0.9833 | 0.9640 | 0.9683 | 0.9456 | 0.9832 | 0.9641 | 0.9684 | 0.9457 | 0.9832 | 0.9641 | 0.9684 | 0.9458 | 0.9831 | 0.9641 | 0.9684 | 0.9462 | 0.9830 | 0.9642 | 0.9686 | 0.9464 | 0.9829 | 0.9643 | 0.9686 | 0.9467 | 0.9825 | 0.9643 | 0.9686 | 0.9470 | 0.9824 | 0.9644 | 0.9687 | 0.9474 | 0.9822 | 0.9645 | 0.9688 | 0.9477 | 0.9820 | 0.9645 | 0.9689 | 0.9480 | 0.9816 | 0.9645 | 0.9688 | 0.9482 | 0.9815 | 0.9646 | 0.9689 | 0.9484 | 0.9814 | 0.9646 | 0.9689 | 0.9489 | 0.9812 | 0.9648 | 0.9691 | 0.9494 | 0.9807 | 0.9648 | 0.9691 | 0.9496 | 0.9805 | 0.9648 | 0.9691 | 0.9500 | 0.9803 | 0.9649 | 0.9692 | 0.9505 | 0.9800 | 0.9650 | 0.9693 | 0.9511 | 0.9794 | 0.9651 | 0.9694 | 0.9515 | 0.9790 | 0.9651 | 0.9694 | 0.9519 | 0.9787 | 0.9651 | 0.9695 | 0.9525 | 0.9782 | 0.9652 | 0.9696 | 0.9532 | 0.9776 | 0.9653 | 0.9697 | 0.9537 | 0.9772 | 0.9653 | 0.9697 | 0.9545 | 0.9772 | 0.9657 | 0.9701 | 0.9547 | 0.9769 | 0.9657 | 0.9701 | 0.9558 | 0.9763 | 0.9660 | 0.9703 | 0.9568 | 0.9755 | 0.9660 | 0.9704 | 0.9588 | 0.9736 | 0.9662 | 0.9706 | 0.9610 | 0.9712 | 0.9661 | 0.9706 | 0.9640 | 0.9680 | 0.9660 | 0.9706 | 0.9694 | 0.9621 | 0.9657 | 0.9705 |
0.2941 | 2.9991 | 7305 | 0.1709 | 0.9292 | 0.9890 | 0.9581 | 0.9627 | 0.9339 | 0.9873 | 0.9599 | 0.9644 | 0.9363 | 0.9867 | 0.9608 | 0.9653 | 0.9374 | 0.9866 | 0.9614 | 0.9658 | 0.9379 | 0.9865 | 0.9616 | 0.9660 | 0.9382 | 0.9862 | 0.9616 | 0.9660 | 0.9388 | 0.9859 | 0.9617 | 0.9662 | 0.9393 | 0.9859 | 0.9620 | 0.9664 | 0.9395 | 0.9858 | 0.9621 | 0.9665 | 0.9397 | 0.9857 | 0.9622 | 0.9666 | 0.9400 | 0.9856 | 0.9623 | 0.9667 | 0.9403 | 0.9856 | 0.9624 | 0.9668 | 0.9406 | 0.9855 | 0.9625 | 0.9669 | 0.9407 | 0.9855 | 0.9626 | 0.9670 | 0.9408 | 0.9855 | 0.9626 | 0.9670 | 0.9411 | 0.9855 | 0.9628 | 0.9671 | 0.9414 | 0.9853 | 0.9628 | 0.9672 | 0.9415 | 0.9852 | 0.9628 | 0.9672 | 0.9416 | 0.9850 | 0.9628 | 0.9672 | 0.9416 | 0.9850 | 0.9628 | 0.9672 | 0.9416 | 0.9849 | 0.9628 | 0.9671 | 0.9419 | 0.9849 | 0.9629 | 0.9673 | 0.9421 | 0.9849 | 0.9630 | 0.9674 | 0.9421 | 0.9849 | 0.9630 | 0.9674 | 0.9422 | 0.9846 | 0.9629 | 0.9673 | 0.9422 | 0.9846 | 0.9629 | 0.9673 | 0.9423 | 0.9846 | 0.9629 | 0.9673 | 0.9423 | 0.9845 | 0.9629 | 0.9673 | 0.9424 | 0.9844 | 0.9629 | 0.9673 | 0.9425 | 0.9843 | 0.9629 | 0.9673 | 0.9425 | 0.9843 | 0.9629 | 0.9673 | 0.9428 | 0.9841 | 0.9630 | 0.9674 | 0.9428 | 0.9840 | 0.9630 | 0.9674 | 0.9429 | 0.9839 | 0.9630 | 0.9674 | 0.9431 | 0.9838 | 0.9630 | 0.9674 | 0.9431 | 0.9838 | 0.9631 | 0.9674 | 0.9432 | 0.9837 | 0.9631 | 0.9674 | 0.9432 | 0.9837 | 0.9631 | 0.9674 | 0.9432 | 0.9837 | 0.9631 | 0.9674 | 0.9433 | 0.9836 | 0.9631 | 0.9674 | 0.9433 | 0.9835 | 0.9630 | 0.9674 | 0.9433 | 0.9835 | 0.9630 | 0.9674 | 0.9434 | 0.9834 | 0.9630 | 0.9674 | 0.9435 | 0.9834 | 0.9630 | 0.9674 | 0.9436 | 0.9832 | 0.9630 | 0.9674 | 0.9438 | 0.9832 | 0.9631 | 0.9675 | 0.9438 | 0.9831 | 0.9631 | 0.9675 | 0.9440 | 0.9831 | 0.9632 | 0.9676 | 0.9442 | 0.9831 | 0.9633 | 0.9677 | 0.9445 | 0.9830 | 0.9634 | 0.9678 | 0.9446 | 0.9829 | 0.9634 | 0.9678 | 0.9447 | 0.9829 | 0.9634 | 0.9678 | 0.9448 | 0.9828 | 0.9635 | 0.9678 | 0.9449 | 0.9827 | 0.9635 | 0.9678 | 0.9449 | 0.9827 | 0.9635 | 0.9678 | 0.9450 | 0.9826 | 0.9635 | 0.9678 | 0.9451 | 0.9826 | 0.9635 | 0.9679 | 0.9453 | 0.9826 | 0.9636 | 0.9680 | 0.9456 | 0.9826 | 0.9637 | 0.9681 | 0.9457 | 0.9825 | 0.9637 | 0.9681 | 0.9457 | 0.9825 | 0.9637 | 0.9681 | 0.9459 | 0.9824 | 0.9638 | 0.9682 | 0.9459 | 0.9824 | 0.9638 | 0.9682 | 0.9460 | 0.9824 | 0.9639 | 0.9682 | 0.9461 | 0.9824 | 0.9639 | 0.9683 | 0.9462 | 0.9822 | 0.9639 | 0.9682 | 0.9463 | 0.9822 | 0.9639 | 0.9683 | 0.9464 | 0.9820 | 0.9639 | 0.9682 | 0.9464 | 0.9817 | 0.9637 | 0.9681 | 0.9465 | 0.9817 | 0.9638 | 0.9682 | 0.9466 | 0.9817 | 0.9638 | 0.9682 | 0.9467 | 0.9816 | 0.9639 | 0.9682 | 0.9467 | 0.9816 | 0.9639 | 0.9682 | 0.9468 | 0.9815 | 0.9638 | 0.9682 | 0.9471 | 0.9815 | 0.9640 | 0.9684 | 0.9475 | 0.9815 | 0.9642 | 0.9686 | 0.9476 | 0.9815 | 0.9642 | 0.9686 | 0.9478 | 0.9813 | 0.9643 | 0.9686 | 0.9479 | 0.9812 | 0.9643 | 0.9686 | 0.9479 | 0.9812 | 0.9643 | 0.9686 | 0.9480 | 0.9811 | 0.9643 | 0.9686 | 0.9481 | 0.9809 | 0.9642 | 0.9686 | 0.9484 | 0.9809 | 0.9644 | 0.9687 | 0.9487 | 0.9807 | 0.9644 | 0.9688 | 0.9489 | 0.9806 | 0.9645 | 0.9689 | 0.9492 | 0.9805 | 0.9646 | 0.9689 | 0.9497 | 0.9805 | 0.9648 | 0.9692 | 0.9500 | 0.9801 | 0.9648 | 0.9692 | 0.9502 | 0.9798 | 0.9648 | 0.9691 | 0.9505 | 0.9797 | 0.9649 | 0.9692 | 0.9506 | 0.9794 | 0.9648 | 0.9692 | 0.9509 | 0.9792 | 0.9649 | 0.9693 | 0.9519 | 0.9790 | 0.9653 | 0.9696 | 0.9525 | 0.9782 | 0.9652 | 0.9696 | 0.9536 | 0.9774 | 0.9654 | 0.9697 | 0.9547 | 0.9761 | 0.9653 | 0.9697 | 0.9565 | 0.9745 | 0.9655 | 0.9699 | 0.9615 | 0.9707 | 0.9661 | 0.9706 | 0.9671 | 0.9612 | 0.9642 | 0.9692 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2,287
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Kyle1668/answerdotai-ModernBERT-large_20241230-093521
Base model
answerdotai/ModernBERT-large