Edit model card

wsj0-full-supervised

This model is a fine-tuned version of facebook/wav2vec2-large-lv60 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0623
  • Wer: 0.0343

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 12
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.517 0.86 500 2.9475 1.0
2.2387 1.72 1000 0.4004 0.3498
0.3081 2.57 1500 0.1362 0.1159
0.1744 3.43 2000 0.1125 0.0929
0.1285 4.29 2500 0.0894 0.0727
0.1015 5.15 3000 0.0852 0.0642
0.0811 6.0 3500 0.0789 0.0614
0.0748 6.86 4000 0.0746 0.0529
0.0639 7.72 4500 0.0714 0.0481
0.0606 8.58 5000 0.0698 0.0489
0.0525 9.43 5500 0.0747 0.0464
0.0489 10.29 6000 0.0594 0.0396
0.0419 11.15 6500 0.0600 0.0359
0.0414 12.01 7000 0.0612 0.0412
0.0383 12.86 7500 0.0676 0.0392
0.0352 13.72 8000 0.0626 0.0388
0.034 14.58 8500 0.0699 0.0372
0.0309 15.44 9000 0.0807 0.0420
0.0295 16.3 9500 0.0796 0.0396
0.0273 17.15 10000 0.0716 0.0376
0.0271 18.01 10500 0.0657 0.0384
0.0251 18.87 11000 0.0585 0.0351
0.024 19.73 11500 0.0557 0.0347
0.0252 20.58 12000 0.0609 0.0327
0.0231 21.44 12500 0.0720 0.0368
0.0202 22.3 13000 0.0625 0.0343
0.0195 23.16 13500 0.0635 0.0372
0.0201 24.01 14000 0.0582 0.0335
0.0183 24.87 14500 0.0562 0.0343
0.0183 25.73 15000 0.0629 0.0335
0.0175 26.59 15500 0.0593 0.0323
0.017 27.44 16000 0.0631 0.0339
0.0162 28.3 16500 0.0597 0.0335
0.0169 29.16 17000 0.0623 0.0343

Framework versions

  • Transformers 4.14.1
  • Pytorch 1.10.2
  • Datasets 1.18.2
  • Tokenizers 0.10.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.