Neural-4-Wino-7b
Neural-4-Wino-7b is a merge of the following models using LazyMergekit:
- Kukedlc/NeuralFusion-7b-Dare-Ties
- paulml/OmniBeagleSquaredMBX-v3-7B-v2
- macadeliccc/MBX-7B-v3-DPO
- Kukedlc/Fasciculus-Arcuatus-7B-slerp
- liminerity/Neurotic-Jomainotrik-7b-slerp
𧩠Configuration
models:
- model: liminerity/Neurotic-Jomainotrik-7b-slerp
# No parameters necessary for base model
- model: Kukedlc/NeuralFusion-7b-Dare-Ties
parameters:
density: 0.66
weight: 0.2
- model: paulml/OmniBeagleSquaredMBX-v3-7B-v2
parameters:
density: 0.55
weight: 0.2
- model: macadeliccc/MBX-7B-v3-DPO
parameters:
density: 0.55
weight: 0.2
- model: Kukedlc/Fasciculus-Arcuatus-7B-slerp
parameters:
density: 0.44
weight: 0.2
- model: liminerity/Neurotic-Jomainotrik-7b-slerp
parameters:
density: 0.66
weight: 0.2
merge_method: dare_ties
base_model: liminerity/Neurotic-Jomainotrik-7b-slerp
parameters:
int8_mask: true
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/Neural-4-Wino-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Kukedlc/Neural-4-Wino-7b
Merge model
this model