Edit model card

deberta-large-japanese-unidic-luw-upos

Model Description

This is a DeBERTa(V2) model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from deberta-large-japanese-unidic. Every long-unit-word is tagged by UPOS (Universal Part-Of-Speech) FEATS.

How to Use

import torch
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-luw-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-luw-upos")
s="国境の長いトンネルを抜けると雪国であった。"
t=tokenizer.tokenize(s)
p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]]
print(list(zip(t,p)))

or

import esupar
nlp=esupar.load("KoichiYasuoka/deberta-large-japanese-unidic-luw-upos")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))

fugashi, unidic-lite and pytokenizations are required.

See Also

esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models

Downloads last month
10
Hosted inference API
Token Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.

Dataset used to train KoichiYasuoka/deberta-large-japanese-unidic-luw-upos