deberta-base-thai-ud-head
Model Description
This is a DeBERTa(V2) model pretrained on Thai Wikipedia texts for dependency-parsing (head-detection on Universal Dependencies) as question-answering, derived from deberta-base-thai. Use [MASK] inside context
to avoid ambiguity when specifying a multiple-used word as question
.
How to Use
from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-thai-ud-head")
model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/deberta-base-thai-ud-head")
qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model,align_to_words=False)
print(qap(question="กว่า",context="หลายหัวดีกว่าหัวเดียว"))
or (with ufal.chu-liu-edmonds)
class TransformersUD(object):
def __init__(self,bert):
import os
from transformers import (AutoTokenizer,AutoModelForQuestionAnswering,
AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline)
self.tokenizer=AutoTokenizer.from_pretrained(bert)
self.model=AutoModelForQuestionAnswering.from_pretrained(bert)
x=AutoModelForTokenClassification.from_pretrained
if os.path.isdir(bert):
d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger"))
else:
from transformers.utils import cached_file
c=AutoConfig.from_pretrained(cached_file(bert,"deprel/config.json"))
d=x(cached_file(bert,"deprel/pytorch_model.bin"),config=c)
s=AutoConfig.from_pretrained(cached_file(bert,"tagger/config.json"))
t=x(cached_file(bert,"tagger/pytorch_model.bin"),config=s)
self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer,
aggregation_strategy="simple")
self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer)
def __call__(self,text):
import numpy,torch,ufal.chu_liu_edmonds
w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)]
z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w)
r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan)
v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[]
for i,t in enumerate(v):
q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id]
c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]])
b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c]
with torch.no_grad():
d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]),
token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b]))
s,e=d.start_logits.tolist(),d.end_logits.tolist()
for i in range(n):
for j in range(n):
m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1]
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
if [0 for i in h if i==0]!=[0]:
i=([p for s,e,p in w]+["root"]).index("root")
j=i+1 if i<n else numpy.nanargmax(m[:,0])
m[0:j,0]=m[j+1:,0]=numpy.nan
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
u="# text = "+text.replace("\n"," ")+"\n"
for i,(s,e,p) in enumerate(w,1):
p="root" if h[i]==0 else "dep" if p=="root" else p
u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]),
str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n"
return u+"\n"
nlp=TransformersUD("KoichiYasuoka/deberta-base-thai-ud-head")
print(nlp("หลายหัวดีกว่าหัวเดียว"))
- Downloads last month
- 31
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for KoichiYasuoka/deberta-base-thai-ud-head
Base model
KoichiYasuoka/deberta-base-thai