File size: 5,427 Bytes
a90a233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- medmnist-v2
metrics:
- accuracy
- f1
model-index:
- name: ViT_bloodmnist_std_45
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: medmnist-v2
      type: medmnist-v2
      config: bloodmnist
      split: validation
      args: bloodmnist
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9064600993861444
    - name: F1
      type: f1
      value: 0.8909233140229111
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ViT_bloodmnist_std_45

This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the medmnist-v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2659
- Accuracy: 0.9065
- F1: 0.8909

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Accuracy | F1     |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|
| 0.6113        | 0.0595 | 200   | 0.8908          | 0.6846   | 0.5917 |
| 0.3578        | 0.1189 | 400   | 0.5958          | 0.7956   | 0.7548 |
| 0.3118        | 0.1784 | 600   | 0.5688          | 0.7810   | 0.7132 |
| 0.2815        | 0.2378 | 800   | 0.5227          | 0.7961   | 0.7645 |
| 0.266         | 0.2973 | 1000  | 0.6554          | 0.7687   | 0.7229 |
| 0.2353        | 0.3567 | 1200  | 0.3328          | 0.8838   | 0.8615 |
| 0.2297        | 0.4162 | 1400  | 0.4696          | 0.8592   | 0.7990 |
| 0.2267        | 0.4756 | 1600  | 0.4362          | 0.8493   | 0.8117 |
| 0.2266        | 0.5351 | 1800  | 0.3286          | 0.8838   | 0.8407 |
| 0.2047        | 0.5945 | 2000  | 0.3614          | 0.8697   | 0.8382 |
| 0.1948        | 0.6540 | 2200  | 0.3144          | 0.8843   | 0.8546 |
| 0.1953        | 0.7134 | 2400  | 0.3805          | 0.8657   | 0.8180 |
| 0.1728        | 0.7729 | 2600  | 0.3364          | 0.8820   | 0.8339 |
| 0.1658        | 0.8323 | 2800  | 0.2873          | 0.8978   | 0.8743 |
| 0.1594        | 0.8918 | 3000  | 0.3062          | 0.8914   | 0.8580 |
| 0.1649        | 0.9512 | 3200  | 0.3313          | 0.8867   | 0.8577 |
| 0.1508        | 1.0107 | 3400  | 0.2117          | 0.9217   | 0.9133 |
| 0.1062        | 1.0702 | 3600  | 0.2978          | 0.8919   | 0.8756 |
| 0.1091        | 1.1296 | 3800  | 0.2832          | 0.9019   | 0.8831 |
| 0.0993        | 1.1891 | 4000  | 0.3275          | 0.8943   | 0.8718 |
| 0.1001        | 1.2485 | 4200  | 0.3420          | 0.8896   | 0.8568 |
| 0.1092        | 1.3080 | 4400  | 0.2594          | 0.9130   | 0.8909 |
| 0.092         | 1.3674 | 4600  | 0.3181          | 0.8966   | 0.8753 |
| 0.1036        | 1.4269 | 4800  | 0.2721          | 0.9048   | 0.8852 |
| 0.0896        | 1.4863 | 5000  | 0.3795          | 0.8820   | 0.8617 |
| 0.0904        | 1.5458 | 5200  | 0.2382          | 0.9171   | 0.8980 |
| 0.0864        | 1.6052 | 5400  | 0.3845          | 0.8814   | 0.8499 |
| 0.0809        | 1.6647 | 5600  | 0.3189          | 0.8984   | 0.8758 |
| 0.0764        | 1.7241 | 5800  | 0.3952          | 0.8843   | 0.8522 |
| 0.0796        | 1.7836 | 6000  | 0.3656          | 0.8867   | 0.8460 |
| 0.0695        | 1.8430 | 6200  | 0.3266          | 0.8925   | 0.8597 |
| 0.0682        | 1.9025 | 6400  | 0.3247          | 0.8960   | 0.8647 |
| 0.06          | 1.9620 | 6600  | 0.2349          | 0.9223   | 0.9055 |
| 0.0498        | 2.0214 | 6800  | 0.2578          | 0.9176   | 0.8952 |
| 0.0296        | 2.0809 | 7000  | 0.2592          | 0.9211   | 0.9070 |
| 0.0251        | 2.1403 | 7200  | 0.3249          | 0.9048   | 0.8797 |
| 0.02          | 2.1998 | 7400  | 0.2977          | 0.9165   | 0.8973 |
| 0.0274        | 2.2592 | 7600  | 0.3411          | 0.9013   | 0.8730 |
| 0.0241        | 2.3187 | 7800  | 0.3916          | 0.9013   | 0.8752 |
| 0.0253        | 2.3781 | 8000  | 0.2919          | 0.9136   | 0.8939 |
| 0.0197        | 2.4376 | 8200  | 0.3294          | 0.9077   | 0.8835 |
| 0.0209        | 2.4970 | 8400  | 0.3709          | 0.8966   | 0.8652 |
| 0.0175        | 2.5565 | 8600  | 0.3639          | 0.9001   | 0.8733 |
| 0.0191        | 2.6159 | 8800  | 0.3706          | 0.9048   | 0.8790 |
| 0.0167        | 2.6754 | 9000  | 0.3120          | 0.9171   | 0.8993 |
| 0.0224        | 2.7348 | 9200  | 0.3493          | 0.9048   | 0.8799 |
| 0.015         | 2.7943 | 9400  | 0.3398          | 0.9130   | 0.8889 |
| 0.0155        | 2.8537 | 9600  | 0.3707          | 0.9036   | 0.8758 |
| 0.0129        | 2.9132 | 9800  | 0.3467          | 0.9118   | 0.8909 |
| 0.0126        | 2.9727 | 10000 | 0.3470          | 0.9095   | 0.8874 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0