KiViDrag commited on
Commit
a90a233
1 Parent(s): 37833f3

End of training

Browse files
README.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/vit-base-patch16-224
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - medmnist-v2
9
+ metrics:
10
+ - accuracy
11
+ - f1
12
+ model-index:
13
+ - name: ViT_bloodmnist_std_45
14
+ results:
15
+ - task:
16
+ name: Image Classification
17
+ type: image-classification
18
+ dataset:
19
+ name: medmnist-v2
20
+ type: medmnist-v2
21
+ config: bloodmnist
22
+ split: validation
23
+ args: bloodmnist
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.9064600993861444
28
+ - name: F1
29
+ type: f1
30
+ value: 0.8909233140229111
31
+ ---
32
+
33
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
34
+ should probably proofread and complete it, then remove this comment. -->
35
+
36
+ # ViT_bloodmnist_std_45
37
+
38
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the medmnist-v2 dataset.
39
+ It achieves the following results on the evaluation set:
40
+ - Loss: 0.2659
41
+ - Accuracy: 0.9065
42
+ - F1: 0.8909
43
+
44
+ ## Model description
45
+
46
+ More information needed
47
+
48
+ ## Intended uses & limitations
49
+
50
+ More information needed
51
+
52
+ ## Training and evaluation data
53
+
54
+ More information needed
55
+
56
+ ## Training procedure
57
+
58
+ ### Training hyperparameters
59
+
60
+ The following hyperparameters were used during training:
61
+ - learning_rate: 5e-05
62
+ - train_batch_size: 32
63
+ - eval_batch_size: 8
64
+ - seed: 42
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+ - num_epochs: 3
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
72
+ |:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|
73
+ | 0.6113 | 0.0595 | 200 | 0.8908 | 0.6846 | 0.5917 |
74
+ | 0.3578 | 0.1189 | 400 | 0.5958 | 0.7956 | 0.7548 |
75
+ | 0.3118 | 0.1784 | 600 | 0.5688 | 0.7810 | 0.7132 |
76
+ | 0.2815 | 0.2378 | 800 | 0.5227 | 0.7961 | 0.7645 |
77
+ | 0.266 | 0.2973 | 1000 | 0.6554 | 0.7687 | 0.7229 |
78
+ | 0.2353 | 0.3567 | 1200 | 0.3328 | 0.8838 | 0.8615 |
79
+ | 0.2297 | 0.4162 | 1400 | 0.4696 | 0.8592 | 0.7990 |
80
+ | 0.2267 | 0.4756 | 1600 | 0.4362 | 0.8493 | 0.8117 |
81
+ | 0.2266 | 0.5351 | 1800 | 0.3286 | 0.8838 | 0.8407 |
82
+ | 0.2047 | 0.5945 | 2000 | 0.3614 | 0.8697 | 0.8382 |
83
+ | 0.1948 | 0.6540 | 2200 | 0.3144 | 0.8843 | 0.8546 |
84
+ | 0.1953 | 0.7134 | 2400 | 0.3805 | 0.8657 | 0.8180 |
85
+ | 0.1728 | 0.7729 | 2600 | 0.3364 | 0.8820 | 0.8339 |
86
+ | 0.1658 | 0.8323 | 2800 | 0.2873 | 0.8978 | 0.8743 |
87
+ | 0.1594 | 0.8918 | 3000 | 0.3062 | 0.8914 | 0.8580 |
88
+ | 0.1649 | 0.9512 | 3200 | 0.3313 | 0.8867 | 0.8577 |
89
+ | 0.1508 | 1.0107 | 3400 | 0.2117 | 0.9217 | 0.9133 |
90
+ | 0.1062 | 1.0702 | 3600 | 0.2978 | 0.8919 | 0.8756 |
91
+ | 0.1091 | 1.1296 | 3800 | 0.2832 | 0.9019 | 0.8831 |
92
+ | 0.0993 | 1.1891 | 4000 | 0.3275 | 0.8943 | 0.8718 |
93
+ | 0.1001 | 1.2485 | 4200 | 0.3420 | 0.8896 | 0.8568 |
94
+ | 0.1092 | 1.3080 | 4400 | 0.2594 | 0.9130 | 0.8909 |
95
+ | 0.092 | 1.3674 | 4600 | 0.3181 | 0.8966 | 0.8753 |
96
+ | 0.1036 | 1.4269 | 4800 | 0.2721 | 0.9048 | 0.8852 |
97
+ | 0.0896 | 1.4863 | 5000 | 0.3795 | 0.8820 | 0.8617 |
98
+ | 0.0904 | 1.5458 | 5200 | 0.2382 | 0.9171 | 0.8980 |
99
+ | 0.0864 | 1.6052 | 5400 | 0.3845 | 0.8814 | 0.8499 |
100
+ | 0.0809 | 1.6647 | 5600 | 0.3189 | 0.8984 | 0.8758 |
101
+ | 0.0764 | 1.7241 | 5800 | 0.3952 | 0.8843 | 0.8522 |
102
+ | 0.0796 | 1.7836 | 6000 | 0.3656 | 0.8867 | 0.8460 |
103
+ | 0.0695 | 1.8430 | 6200 | 0.3266 | 0.8925 | 0.8597 |
104
+ | 0.0682 | 1.9025 | 6400 | 0.3247 | 0.8960 | 0.8647 |
105
+ | 0.06 | 1.9620 | 6600 | 0.2349 | 0.9223 | 0.9055 |
106
+ | 0.0498 | 2.0214 | 6800 | 0.2578 | 0.9176 | 0.8952 |
107
+ | 0.0296 | 2.0809 | 7000 | 0.2592 | 0.9211 | 0.9070 |
108
+ | 0.0251 | 2.1403 | 7200 | 0.3249 | 0.9048 | 0.8797 |
109
+ | 0.02 | 2.1998 | 7400 | 0.2977 | 0.9165 | 0.8973 |
110
+ | 0.0274 | 2.2592 | 7600 | 0.3411 | 0.9013 | 0.8730 |
111
+ | 0.0241 | 2.3187 | 7800 | 0.3916 | 0.9013 | 0.8752 |
112
+ | 0.0253 | 2.3781 | 8000 | 0.2919 | 0.9136 | 0.8939 |
113
+ | 0.0197 | 2.4376 | 8200 | 0.3294 | 0.9077 | 0.8835 |
114
+ | 0.0209 | 2.4970 | 8400 | 0.3709 | 0.8966 | 0.8652 |
115
+ | 0.0175 | 2.5565 | 8600 | 0.3639 | 0.9001 | 0.8733 |
116
+ | 0.0191 | 2.6159 | 8800 | 0.3706 | 0.9048 | 0.8790 |
117
+ | 0.0167 | 2.6754 | 9000 | 0.3120 | 0.9171 | 0.8993 |
118
+ | 0.0224 | 2.7348 | 9200 | 0.3493 | 0.9048 | 0.8799 |
119
+ | 0.015 | 2.7943 | 9400 | 0.3398 | 0.9130 | 0.8889 |
120
+ | 0.0155 | 2.8537 | 9600 | 0.3707 | 0.9036 | 0.8758 |
121
+ | 0.0129 | 2.9132 | 9800 | 0.3467 | 0.9118 | 0.8909 |
122
+ | 0.0126 | 2.9727 | 10000 | 0.3470 | 0.9095 | 0.8874 |
123
+
124
+
125
+ ### Framework versions
126
+
127
+ - Transformers 4.45.1
128
+ - Pytorch 2.4.0
129
+ - Datasets 3.0.1
130
+ - Tokenizers 0.20.0
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/vit-base-patch16-224",
3
+ "architectures": [
4
+ "ViTForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "encoder_stride": 16,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.0,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "basophil",
13
+ "1": "eosinophil",
14
+ "2": "erythroblast",
15
+ "3": "immature granulocytes(myelocytes, metamyelocytes and promyelocytes)",
16
+ "4": "lymphocyte",
17
+ "5": "monocyte",
18
+ "6": "neutrophil",
19
+ "7": "platelet"
20
+ },
21
+ "image_size": 224,
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "basophil": "0",
26
+ "eosinophil": "1",
27
+ "erythroblast": "2",
28
+ "immature granulocytes(myelocytes, metamyelocytes and promyelocytes)": "3",
29
+ "lymphocyte": "4",
30
+ "monocyte": "5",
31
+ "neutrophil": "6",
32
+ "platelet": "7"
33
+ },
34
+ "layer_norm_eps": 1e-12,
35
+ "model_type": "vit",
36
+ "num_attention_heads": 12,
37
+ "num_channels": 3,
38
+ "num_hidden_layers": 12,
39
+ "patch_size": 16,
40
+ "problem_type": "single_label_classification",
41
+ "qkv_bias": true,
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.45.1"
44
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06d66d59be262b5851a5ead8859fcd92aa79a6906ca547eca538a403c4b845e4
3
+ size 343242432
preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_rescale": true,
4
+ "do_resize": true,
5
+ "image_mean": [
6
+ 0.5,
7
+ 0.5,
8
+ 0.5
9
+ ],
10
+ "image_processor_type": "ViTImageProcessor",
11
+ "image_std": [
12
+ 0.5,
13
+ 0.5,
14
+ 0.5
15
+ ],
16
+ "resample": 2,
17
+ "rescale_factor": 0.00392156862745098,
18
+ "size": {
19
+ "height": 224,
20
+ "width": 224
21
+ }
22
+ }
runs/Nov09_07-01-15_53220661683e/events.out.tfevents.1731135678.53220661683e.23.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ab18afb52c9c1b154b1fb1a15564df12203e1d869240ac5e775a688f50c9857
3
+ size 34706
runs/Nov09_07-01-15_53220661683e/events.out.tfevents.1731143281.53220661683e.23.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb7abd7debdf37a7cbcfbc9d96b4a4cae023949ae8838c4dbaa67bf7fdd9bacf
3
+ size 457
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10202ffd1cdac6fdf083c26c246153f18a2137c824e3bb9a0b8acc6ae540dafe
3
+ size 5240