Hub-Report-20241202125641

This model is a fine-tuned version of sentence-transformers/all-mpnet-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0629
  • F1: 0.9126
  • Roc Auc: 0.9528
  • Accuracy: 0.9099

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 13

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.3156 1.0 936 0.1257 0.7426 0.8057 0.6152
0.0977 2.0 1872 0.0706 0.8950 0.9376 0.8831
0.0526 3.0 2808 0.0596 0.9000 0.9442 0.8946
0.032 4.0 3744 0.0551 0.9081 0.9497 0.9036
0.0226 5.0 4680 0.0632 0.8951 0.9428 0.8909
0.0193 6.0 5616 0.0579 0.9098 0.9510 0.9068
0.0156 7.0 6552 0.0607 0.9086 0.9504 0.9046
0.0129 8.0 7488 0.0611 0.9118 0.9523 0.9080
0.0126 9.0 8424 0.0633 0.9114 0.9529 0.9077
0.0107 10.0 9360 0.0629 0.9126 0.9528 0.9099
0.0084 11.0 10296 0.0654 0.9091 0.9510 0.9058
0.0079 12.0 11232 0.0647 0.9100 0.9521 0.9055
0.0065 13.0 12168 0.0652 0.9102 0.9523 0.9071

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
2,243
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kevinger/Hub-Report-20241202125641

Finetuned
(189)
this model