File size: 3,992 Bytes
5803481
 
dc39238
5803481
 
 
 
 
 
 
 
dc39238
 
63d42a4
 
 
5803481
 
 
 
 
63d42a4
5803481
63d42a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd94d0c
63d42a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5803481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc39238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
library_name: transformers
license: apache-2.0
base_model: llm-jp/llm-jp-3-3.7b-instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: sft
  results: []
language:
- ja
datasets:
- Kendamarron/Magpie-Tanuki-8B-CoT
- Kendamarron/OpenMathInstruct-2-ja-CoT
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Model

[llm-jp/llm-jp-3-3.7b-instruct](https://huggingface.co/llm-jp/llm-jp-3-3.7b-instruct)をCoTデータでファインチューニングすることで作成したreasoningモデルです。

学習にはQwen2.5-32B-Instruct-AWQを使って生成した合成データセットを使用しています。.

- [Kendamarron/llm-jp-3-3.7b-o1-v0.1](https://huggingface.co/datasets/Kendamarron/Magpie-Tanuki-8B-CoT)
- [Kendamarron/OpenMathInstruct-2-ja-CoT](https://huggingface.co/datasets/Kendamarron/OpenMathInstruct-2-ja-CoT)

## Usage
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = "cuda"

model = AutoModelForCausalLM.from_pretrained(
    'Kendamarron/llm-jp-3-3.7b-o1-v0.1',
    torch_dtype=torch.bfloat16,
    device_map=device,
)
tokenizer = AutoTokenizer.from_pretrained('Kendamarron/llm-jp-3-3.7b-o1-v0.1')

messages = [
  {"role": "system", "content": "あなたは優秀で論理的なアシスタントです。まずは<Thought></Thought>タグの中であなたの思考の過程を記載し、<Output></Output>タグの中に最終的にユーザーに提供する出力を記載します。"},
  {"role": "user", "content": "1から10までの整数を足すと?"}
]
text = tokenizer.apply_chat_template(
  messages,
  tokenize=False,
  add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
  model_inputs.input_ids,
  max_new_tokens=256,
  do_sample=True,
  top_p=0.95,
  top_k=40,
  temperature=0.7,
  repetition_penalty=1.1,
  pad_token_id=tokenizer.eos_token_id,
  eos_token_id=tokenizer.eos_token_id,
  no_repeat_ngram_size=2
  )
generated_ids = [
  output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

print(response)
```

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0

### Training results



### Framework versions

- Transformers 4.46.1
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3

### LLaMA-Factory yaml
```
### model
model_name_or_path: llm-jp/llm-jp-3-3.7b-instruct

### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z3_config.json

### dataset
dataset: cot_normal, cot_math
template: alpaca_ja
cutoff_len: 8192
overwrite_cache: true
preprocessing_num_workers: 16

### output
output_dir: saves/llm_jp/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true

### train
per_device_train_batch_size: 8
gradient_accumulation_steps: 4
learning_rate: 1.0e-5
num_train_epochs: 2.0
lr_scheduler_type: cosine
optim: adamw_bnb_8bit
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000

### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

### logging
report_to: wandb
```