File size: 3,992 Bytes
5803481 dc39238 5803481 dc39238 63d42a4 5803481 63d42a4 5803481 63d42a4 dd94d0c 63d42a4 5803481 dc39238 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
---
library_name: transformers
license: apache-2.0
base_model: llm-jp/llm-jp-3-3.7b-instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: sft
results: []
language:
- ja
datasets:
- Kendamarron/Magpie-Tanuki-8B-CoT
- Kendamarron/OpenMathInstruct-2-ja-CoT
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Model
[llm-jp/llm-jp-3-3.7b-instruct](https://huggingface.co/llm-jp/llm-jp-3-3.7b-instruct)をCoTデータでファインチューニングすることで作成したreasoningモデルです。
学習にはQwen2.5-32B-Instruct-AWQを使って生成した合成データセットを使用しています。.
- [Kendamarron/llm-jp-3-3.7b-o1-v0.1](https://huggingface.co/datasets/Kendamarron/Magpie-Tanuki-8B-CoT)
- [Kendamarron/OpenMathInstruct-2-ja-CoT](https://huggingface.co/datasets/Kendamarron/OpenMathInstruct-2-ja-CoT)
## Usage
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
device = "cuda"
model = AutoModelForCausalLM.from_pretrained(
'Kendamarron/llm-jp-3-3.7b-o1-v0.1',
torch_dtype=torch.bfloat16,
device_map=device,
)
tokenizer = AutoTokenizer.from_pretrained('Kendamarron/llm-jp-3-3.7b-o1-v0.1')
messages = [
{"role": "system", "content": "あなたは優秀で論理的なアシスタントです。まずは<Thought></Thought>タグの中であなたの思考の過程を記載し、<Output></Output>タグの中に最終的にユーザーに提供する出力を記載します。"},
{"role": "user", "content": "1から10までの整数を足すと?"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=256,
do_sample=True,
top_p=0.95,
top_k=40,
temperature=0.7,
repetition_penalty=1.1,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=2
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
### LLaMA-Factory yaml
```
### model
model_name_or_path: llm-jp/llm-jp-3-3.7b-instruct
### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z3_config.json
### dataset
dataset: cot_normal, cot_math
template: alpaca_ja
cutoff_len: 8192
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llm_jp/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 8
gradient_accumulation_steps: 4
learning_rate: 1.0e-5
num_train_epochs: 2.0
lr_scheduler_type: cosine
optim: adamw_bnb_8bit
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
### logging
report_to: wandb
``` |