File size: 15,283 Bytes
22d8ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import argparse

import os
import re

import numpy as np
from PIL import Image
from skimage import color, io
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils import data
from torchvision import transforms
from tqdm import tqdm
from torch.autograd import Variable

# from ColorEncoder import ColorEncoder
from models import ColorEncoder, ColorUNet
from vgg_model import vgg19
from discriminator import Discriminator
# from data.data_loader import MultiResolutionDataset
from data.data_loader_sketch import MultiResolutionDataset

from utils import tensor_lab2rgb

from distributed import (
    get_rank,
    synchronize,
    reduce_loss_dict,
)


def mkdirss(dirpath):
    if not os.path.exists(dirpath):
        os.makedirs(dirpath)


def data_sampler(dataset, shuffle, distributed):
    if distributed:
        return data.distributed.DistributedSampler(dataset, shuffle=shuffle)

    if shuffle:
        return data.RandomSampler(dataset)

    else:
        return data.SequentialSampler(dataset)


def requires_grad(model, flag=True):
    for p in model.parameters():
        p.requires_grad = flag


def sample_data(loader):
    while True:
        for batch in loader:
            yield batch


def Lab2RGB_out(img_lab):
    img_lab = img_lab.detach().cpu()
    img_l = img_lab[:, :1, :, :]
    img_ab = img_lab[:, 1:, :, :]
    # print(torch.max(img_l), torch.min(img_l))
    # print(torch.max(img_ab), torch.min(img_ab))
    img_l = img_l + 50
    pred_lab = torch.cat((img_l, img_ab), 1)[0, ...].numpy()
    # grid_lab = utils.make_grid(pred_lab, nrow=1).numpy().astype("float64")
    # print(grid_lab.shape)
    out = (np.clip(color.lab2rgb(pred_lab.transpose(1, 2, 0)), 0, 1) * 255).astype("uint8")
    return out


def RGB2Lab(inputs):
    # input [0, 255] uint8
    # out l: [0, 100], ab: [-110, 110], float32
    return color.rgb2lab(inputs)


def Normalize(inputs):
    l = inputs[:, :, 0:1]
    ab = inputs[:, :, 1:3]
    l = l - 50
    lab = np.concatenate((l, ab), 2)

    return lab.astype('float32')


def numpy2tensor(inputs):
    out = torch.from_numpy(inputs.transpose(2, 0, 1))
    return out


def tensor2numpy(inputs):
    out = inputs[0, ...].detach().cpu().numpy().transpose(1, 2, 0)
    return out


def preprocessing(inputs):
    # input: rgb, [0, 255], uint8
    img_lab = Normalize(RGB2Lab(inputs))
    img = np.array(inputs, 'float32')  # [0, 255]
    img = numpy2tensor(img)
    img_lab = numpy2tensor(img_lab)
    return img.unsqueeze(0), img_lab.unsqueeze(0)


def uncenter_l(inputs):
    l = inputs[:, :1, :, :] + 50
    ab = inputs[:, 1:, :, :]
    return torch.cat((l, ab), 1)


def train(
        args,
        loader,
        colorEncoder,
        colorUNet,
        discriminator,
        vggnet,
        g_optim,
        d_optim,
        device,
):
    loader = sample_data(loader)

    pbar = range(args.iter)

    if get_rank() == 0:
        pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.01)

    g_loss_val = 0
    loss_dict = {}
    recon_val_all = 0
    fea_val_all = 0
    disc_val_all = 0
    disc_val_GAN_all = 0
    disc_val = 0
    count = 0
    criterion_GAN = torch.nn.MSELoss().to(device)

    # Calculate output of image discriminator (PatchGAN)
    patch = (1, args.size // 2 ** 4, args.size // 2 ** 4)
    Tensor = torch.cuda.FloatTensor if device == 'cuda' else torch.FloatTensor

    colorEncoder_module = colorEncoder
    colorUNet_module = colorUNet

    for idx in pbar:
        i = idx + args.start_iter + 1

        if i > args.iter:
            print("Done!")

            break

        # img, img_ref, img_lab = next(loader)
        img, img_ref, img_lab, img_lab_sketch = next(loader)

        # Adversarial ground truths
        valid = Variable(Tensor(np.ones((img.size(0), *patch))), requires_grad=False)
        fake = Variable(Tensor(np.zeros((img.size(0), *patch))), requires_grad=False)
        # ima =  img_ref.numpy()
        # ima = ima[0].astype('uint8')
        # ima =  Image.fromarray(ima.transpose(1,2,0))
        # ima.show()

        img = img.to(device)  # GT [B, 3, 256, 256]
        img_lab = img_lab.to(device)  # GT
        img_lab_sketch = img_lab_sketch.to(device)

        img_ref = img_ref.to(device)  # tps_transformed image RGB [B, 3, 256, 256]

        img_l = img_lab_sketch[:, :1, :, :] / 50  # [-1, 1] target L
        img_ab = img_lab[:, 1:, :, :] / 110  # [-1, 1] target ab
        # img_ref_ab = img_ref_lab[:,1:,:,:] / 110 # [-1, 1] ref ab

        colorEncoder.train()
        colorUNet.train()
        discriminator.train()

        requires_grad(colorEncoder, True)
        requires_grad(colorUNet, True)
        requires_grad(discriminator, True)

        # ------------------
        #  Train Generators
        # ------------------

        ref_color_vector = colorEncoder(img_ref / 255.)

        fake_swap_ab = colorUNet((img_l, ref_color_vector))  # [-1, 1]

        ## recon l1 loss
        recon_loss = (F.smooth_l1_loss(fake_swap_ab, img_ab))

        ## feature loss
        real_img_rgb = img / 255.
        features_A = vggnet(real_img_rgb, layer_name='all')

        fake_swap_rgb = tensor_lab2rgb(torch.cat((img_l * 50 + 50, fake_swap_ab * 110), 1))  # [0, 1]
        features_B = vggnet(fake_swap_rgb, layer_name='all')
        # fea_loss = F.l1_loss(features_A[-1], features_B[-1]) * 0.1
        # fea_loss = 0

        fea_loss1 = F.l1_loss(features_A[0], features_B[0]) / 32 * 0.1
        fea_loss2 = F.l1_loss(features_A[1], features_B[1]) / 16 * 0.1
        fea_loss3 = F.l1_loss(features_A[2], features_B[2]) / 8 * 0.1
        fea_loss4 = F.l1_loss(features_A[3], features_B[3]) / 4 * 0.1
        fea_loss5 = F.l1_loss(features_A[4], features_B[4]) * 0.1

        fea_loss = fea_loss1 + fea_loss2 + fea_loss3 + fea_loss4 + fea_loss5

        ## discriminator loss
        real_img_rgb = img / 255.
        img_ref_rgb = img_ref / 255.
        zero_ab_image = torch.zeros_like(fake_swap_ab)
        input_img_rgb = tensor_lab2rgb(torch.cat((img_l * 50 + 50, zero_ab_image), 1))  # [0, 1]

        # ima = input_img_rgb.cpu()
        # ima =  ima.numpy()*255
        # ima = ima[0].astype('uint8')
        # ima =  Image.fromarray(ima.transpose(1,2,0))
        # ima.show()

        pred_fake = discriminator(fake_swap_rgb, input_img_rgb, img_ref_rgb)
        disc_loss_GAN = criterion_GAN(pred_fake, valid)
        disc_loss_GAN = disc_loss_GAN * 0.01

        loss_dict["recon"] = recon_loss

        loss_dict["fea"] = fea_loss

        loss_dict["disc_loss_GAN"] = disc_loss_GAN

        g_optim.zero_grad()
        (recon_loss + fea_loss + disc_loss_GAN).backward()
        g_optim.step()

        # ---------------------
        #  Train Discriminator
        # ---------------------
        # if the disc_loss_GAN<0.003, then start to train Discriminator
        if i % 35 == 0:
            # Real loss
            pred_real = discriminator(real_img_rgb, input_img_rgb, img_ref_rgb)
            loss_real = criterion_GAN(pred_real, valid)

            # Fake loss
            pred_fake = discriminator(fake_swap_rgb.detach(), input_img_rgb, img_ref_rgb)
            loss_fake = criterion_GAN(pred_fake, fake)

            # Total loss
            disc_loss = 0.5 * (loss_real + loss_fake)

            d_optim.zero_grad()
            disc_loss.backward()
            d_optim.step()

            # loss for discriminator itself
            disc_val = disc_loss.mean().item()
            disc_val_all += disc_val
            count += 1

        # --------------
        #  Log Progress
        # --------------

        loss_reduced = reduce_loss_dict(loss_dict)

        recon_val = loss_reduced["recon"].mean().item()
        recon_val_all += recon_val
        # recon_val = 0
        fea_val = loss_reduced["fea"].mean().item()
        fea_val_all += fea_val
        # fea_val = 0

        # loss for generator
        disc_val_GAN = loss_reduced["disc_loss_GAN"].mean().item()
        disc_val_GAN_all += disc_val_GAN

        if get_rank() == 0:
            pbar.set_description(
                (
                    f"recon:{recon_val:.4f}; fea:{fea_val:.4f}; disc_GAN:{disc_val_GAN:.4f}; discriminator:{disc_val:.4f};"
                )
            )

            if i % 100 == 0:
                if disc_val_all != 0:
                    disc_val_all = disc_val_all / count
                print(
                    f"recon_all:{recon_val_all / 100:.4f}; fea_all:{fea_val_all / 100:.4f}; disc_GAN_all:{disc_val_GAN_all / 100:.4f};discriminator:{disc_val_all:.4f};")
                recon_val_all = 0
                fea_val_all = 0
                disc_val_GAN_all = 0
                disc_val_all = 0
                count = 0

            # this code is for model validation, you should prepare you own val dataset and edit code to use it
            # if i % 250 == 0:
            #     with torch.no_grad():
            #         colorEncoder.eval()
            #         colorUNet.eval()
            #
            #         imgsize = 256
            #         for inum in range(12):
            #             val_img_path = 'test_datasets/val_Sketch/in%d.jpg' % (inum + 1)
            #             val_ref_path = 'test_datasets/val_Sketch/ref%d.jpg' % (inum + 1)
            #             # val_img_path = 'test_datasets/val_daytime/day_sample/in%d.jpg'%(inum+1)
            #             # val_ref_path = 'test_datasets/val_daytime/night_sample/dark4.jpg'
            #             out_name = 'in%d_ref%d.png' % (inum + 1, inum + 1)
            #             val_img = Image.open(val_img_path).convert("RGB").resize((imgsize, imgsize))
            #             val_img_ref = Image.open(val_ref_path).convert("RGB").resize((imgsize, imgsize))
            #             val_img, val_img_lab = preprocessing(val_img)
            #             val_img_ref, val_img_ref_lab = preprocessing(val_img_ref)
            #
            #             # val_img = val_img.to(device)
            #             val_img_lab = val_img_lab.to(device)
            #             val_img_ref = val_img_ref.to(device)
            #             # val_img_ref_lab = val_img_ref_lab.to(device)
            #
            #             val_img_l = val_img_lab[:, :1, :, :] / 50.  # [-1, 1]
            #             # val_img_ref_ab = val_img_ref_lab[:,1:,:,:] / 110. # [-1, 1]
            #
            #             ref_color_vector = colorEncoder(val_img_ref / 255.)  # [0, 1]
            #             fake_swap_ab = colorUNet((val_img_l, ref_color_vector))
            #
            #             fake_img = torch.cat((val_img_l * 50, fake_swap_ab * 110), 1)
            #
            #             sample = np.concatenate(
            #                 (tensor2numpy(val_img), tensor2numpy(val_img_ref), Lab2RGB_out(fake_img)), 1)
            #
            #             out_dir = 'training_logs/%s/%06d' % (args.experiment_name, i)
            #             mkdirss(out_dir)
            #             io.imsave('%s/%s' % (out_dir, out_name), sample.astype('uint8'))
            #             torch.cuda.empty_cache()
            if i % 2000 == 0:
                out_dir_g = "experiments/%s" % (args.experiment_name)
                mkdirss(out_dir_g)
                torch.save(
                    {
                        "colorEncoder": colorEncoder_module.state_dict(),
                        "colorUNet": colorUNet_module.state_dict(),
                        "g_optim": g_optim.state_dict(),
                        "args": args,
                    },
                    f"%s/{str(i).zfill(6)}_sketch.pt" % (out_dir_g),
                )
                out_dir_d = "experiments/Discriminator"
                mkdirss(out_dir_d)
                torch.save(
                    {
                        "discriminator": discriminator.state_dict(),
                        "d_optim": d_optim.state_dict(),
                        "args": args,
                    },
                    f"%s/{str(i).zfill(6)}_d.pt" % (out_dir_d),
                )


if __name__ == "__main__":
    device = "cuda"

    torch.backends.cudnn.benchmark = True

    parser = argparse.ArgumentParser()

    parser.add_argument("--datasets", type=str)
    parser.add_argument("--iter", type=int, default=200000)
    parser.add_argument("--batch", type=int, default=16)
    parser.add_argument("--size", type=int, default=256)
    parser.add_argument("--ckpt", type=str, default=None)
    parser.add_argument("--ckpt_disc", type=str, default=None)
    parser.add_argument("--lr", type=float, default=0.0001)
    parser.add_argument("--lr_disc", type=float, default=0.0002)
    parser.add_argument("--experiment_name", type=str, default="default")
    parser.add_argument("--wandb", action="store_true")
    parser.add_argument("--local_rank", type=int, default=0)

    args = parser.parse_args()

    n_gpu = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    args.distributed = n_gpu > 1

    args.start_iter = 0

    vggnet = vgg19(pretrained_path='./experiments/VGG19/vgg19-dcbb9e9d.pth', require_grad=False)
    vggnet = vggnet.to(device)
    vggnet.eval()

    colorEncoder = ColorEncoder(color_dim=512).to(device)
    colorUNet = ColorUNet(bilinear=True).to(device)
    discriminator = Discriminator(in_channels=3).to(device)

    g_optim = optim.Adam(
        list(colorEncoder.parameters()) + list(colorUNet.parameters()),
        lr=args.lr,
        betas=(0.9, 0.99),
    )

    d_optim = optim.Adam(
        discriminator.parameters(),
        lr=args.lr_disc,
        betas=(0.5, 0.999),
    )

    if args.ckpt is not None:
        print("load model:", args.ckpt)

        ckpt = torch.load(args.ckpt, map_location=lambda storage, loc: storage)

        try:
            ckpt_name = os.path.basename(args.ckpt)
            match = re.search(r'\d+', ckpt_name)
            if match:
                args.start_iter = int(match.group(0))
            else:
                args.start_iter = 0
        except ValueError:
            pass

        colorEncoder.load_state_dict(ckpt["colorEncoder"])
        colorUNet.load_state_dict(ckpt["colorUNet"])
        g_optim.load_state_dict(ckpt["g_optim"])

    if args.ckpt_disc is not None:
        print("load discriminator model:", args.ckpt_disc)

        ckpt_disc = torch.load(args.ckpt_disc, map_location=lambda storage, loc: storage)
        discriminator.load_state_dict(ckpt_disc["discriminator"])
        d_optim.load_state_dict(ckpt_disc["d_optim"])
    # print(args.distributed)

    transform = transforms.Compose(
        [
            transforms.RandomHorizontalFlip(),
            # transforms.RandomVerticalFlip(),
            transforms.RandomRotation(degrees=(-90, 90))
        ]
    )

    datasets = []
    dataset = MultiResolutionDataset(args.datasets, transform, args.size)
    datasets.append(dataset)

    loader = data.DataLoader(
        data.ConcatDataset(datasets),
        batch_size=args.batch,
        sampler=data_sampler(dataset, shuffle=True, distributed=args.distributed),
        drop_last=True,
    )

    train(
        args,
        loader,
        colorEncoder,
        colorUNet,
        discriminator,
        vggnet,
        g_optim,
        d_optim,
        device,
    )