File size: 7,260 Bytes
22d8ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from vgg_model import vgg19

class DoubleConv(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(mid_channels),
            nn.LeakyReLU(0.1, True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.LeakyReLU(0.1, True)
        )

    def forward(self, x):
        x = self.double_conv(x)
        return x

class ResBlock(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.bottle_conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
        self.double_conv = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.LeakyReLU(0.2, True),
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
        )

    def forward(self, x):
        x = self.bottle_conv(x)
        x = self.double_conv(x) + x
        return x / math.sqrt(2)


class Down(nn.Module):
    """Downscaling with stride conv then double conv"""

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.main = nn.Sequential(
            nn.Conv2d(in_channels, in_channels, 4, 2, 1),
            nn.LeakyReLU(0.1, True),
            # DoubleConv(in_channels, out_channels)
            ResBlock(in_channels, out_channels)
        )
        

    def forward(self, x):

        x = self.main(x)

        return x

class SDFT(nn.Module):

    def __init__(self, color_dim, channels, kernel_size = 3):
        super().__init__()
        
        # generate global conv weights
        fan_in = channels * kernel_size ** 2
        self.kernel_size = kernel_size
        self.padding = kernel_size // 2

        self.scale = 1 / math.sqrt(fan_in)
        self.modulation = nn.Conv2d(color_dim, channels, 1)
        self.weight = nn.Parameter(
            torch.randn(1, channels, channels, kernel_size, kernel_size)
        )

    def forward(self, fea, color_style):
        # for global adjustation
        B, C, H, W = fea.size()
        # print(fea.shape, color_style.shape)
        style = self.modulation(color_style).view(B, 1, C, 1, 1)
        weight = self.scale * self.weight * style
        # demodulation
        demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
        weight = weight * demod.view(B, C, 1, 1, 1)

        weight = weight.view(
            B * C, C, self.kernel_size, self.kernel_size
        )

        fea = fea.view(1, B * C, H, W)
        fea = F.conv2d(fea, weight, padding=self.padding, groups=B)
        fea = fea.view(B, C, H, W)

        return fea


class UpBlock(nn.Module):
    

    def __init__(self, color_dim, in_channels, out_channels, kernel_size = 3, bilinear=True):
        super().__init__()

        # if bilinear, use the normal convolutions to reduce the number of channels
        if bilinear:
            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
            
        else:
            self.up = nn.ConvTranspose2d(in_channels , in_channels // 2, kernel_size=2, stride=2)

        self.conv_cat = nn.Sequential(
            nn.Conv2d(in_channels // 2 + in_channels // 8, out_channels, 1, 1, 0),
            nn.LeakyReLU(0.2, True),
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            nn.LeakyReLU(0.2, True)
        )

        self.conv_s = nn.Conv2d(in_channels//2, out_channels, 1, 1, 0)

        # generate global conv weights
        self.SDFT = SDFT(color_dim, out_channels, kernel_size)


    def forward(self, x1, x2, color_style):
        # print(x1.shape, x2.shape, color_style.shape)
        x1 = self.up(x1)
        x1_s = self.conv_s(x1)

        x = torch.cat([x1, x2[:, ::4, :, :]], dim=1)
        x = self.conv_cat(x)
        x = self.SDFT(x, color_style)

        x = x + x1_s            #ResBlock

        return x


class ColorEncoder(nn.Module):
    def __init__(self, color_dim=512):
        super(ColorEncoder, self).__init__()

        # self.vgg = vgg19(pretrained_path=None)
        self.vgg = vgg19()

        self.feature2vector = nn.Sequential(
            nn.Conv2d(color_dim, color_dim, 4, 2, 2), # 8x8
            nn.LeakyReLU(0.2, True),
            nn.Conv2d(color_dim, color_dim, 3, 1, 1),
            nn.LeakyReLU(0.2, True),
            nn.Conv2d(color_dim, color_dim, 4, 2, 2), # 4x4
            nn.LeakyReLU(0.2, True),
            nn.Conv2d(color_dim, color_dim, 3, 1, 1),
            nn.LeakyReLU(0.2, True),
            nn.AdaptiveAvgPool2d((1, 1)), # 1x1
            nn.Conv2d(color_dim, color_dim//2, 1), # linear-1
            nn.LeakyReLU(0.2, True),
            nn.Conv2d(color_dim//2, color_dim//2, 1), # linear-2
            nn.LeakyReLU(0.2, True),
            nn.Conv2d(color_dim//2, color_dim, 1), # linear-3
        )

        self.color_dim = color_dim

    def forward(self, x):
        # x #[0, 1] RGB
        vgg_fea = self.vgg(x, layer_name='relu5_2') # [B, 512, 16, 16]

        x_color = self.feature2vector(vgg_fea[-1]) # [B, 512, 1, 1]

        return x_color


class ColorUNet(nn.Module):
    ### this model output is ab
    def __init__(self, n_channels=1, n_classes=3, bilinear=True):
        super(ColorUNet, self).__init__()
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.bilinear = bilinear

        self.inc = DoubleConv(n_channels, 64)
        self.down1 = Down(64, 128)
        self.down2 = Down(128, 256)
        self.down3 = Down(256, 512)
        factor = 2 if bilinear else 1
        self.down4 = Down(512, 1024 // factor)

        self.up1 = UpBlock(512, 1024, 512 // factor, 3, bilinear)
        self.up2 = UpBlock(512, 512, 256 // factor, 3, bilinear)
        self.up3 = UpBlock(512, 256, 128 // factor, 5, bilinear)
        self.up4 = UpBlock(512, 128, 64, 5, bilinear)
        self.outc = nn.Sequential(
                nn.Conv2d(64, 64, 3, 1, 1),
                nn.LeakyReLU(0.2, True),
                nn.Conv2d(64, 2, 3, 1, 1),
                nn.Tanh()                   # [-1,1]
        )

    def forward(self, x):
        # print(torch.max(x[0]), torch.min(x[0])) #[-1, 1] gray image L
        # print(torch.max(x[1]), torch.min(x[1])) # color vector

        x_color = x[1] # [B, 512, 1, 1]

        x1 = self.inc(x[0]) # [B, 64, 256, 256]
        x2 = self.down1(x1) # [B, 128, 128, 128]
        x3 = self.down2(x2) # [B, 256, 64, 64]
        x4 = self.down3(x3) # [B, 512, 32, 32]
        x5 = self.down4(x4) # [B, 512, 16, 16]

        x6 = self.up1(x5, x4, x_color) # [B, 256, 32, 32]
        x7 = self.up2(x6, x3, x_color) # [B, 128, 64, 64]
        x8 = self.up3(x7, x2, x_color) # [B, 64, 128, 128]
        x9 = self.up4(x8, x1, x_color) # [B, 64, 256, 256]
        x_ab = self.outc(x9)

        return x_ab