XLM-RoBERTa-Large for Aspect-Based Sentiment Analysis
This is a fine-tuned XLM-RoBERTa-Large model for Aspect-Based Sentiment Analysis in Thai. The model is fine-tuned on a dataset specifically for the task of identifying sentiments related to specific aspects within sentences.
This model was the winning model in the Aspect-Based Sentiment Analysis competition of Super AI Engineer Season 4 - Hackathon Online. It achieved the best performance among all participating models, demonstrating its effectiveness in the given task.
Model Description
XLM-RoBERTa is a large multilingual language model that has been fine-tuned for sequence tagging tasks. This model has been further fine-tuned for Aspect-Based Sentiment Analysis, making it suitable for applications that require understanding of sentiments expressed towards specific aspects within a text.
Classes
The model can predict the following classes:
ประเด็น | ป้ายกำกับเชิงบวก (Positive) | ป้ายกำกับเชิงลบ (Negative) |
---|---|---|
คุณภาพของสินค้า | Quality | NEG-Quality |
ระยะเวลาที่ใช้ในการจัดส่ง | DeliveryTime | NEG-DeliveryTime |
การบริการของร้านค้า | StoreService | NEG-StoreService |
รูปลักษณ์ของสินค้า | Appearance | NEG-Appearance |
การแพ็กสินค้า | Packaging | NEG-Packaging |
ราคาของสินค้า | Price | NEG-Price |
ขนาดของสินค้า | Size | NEG-Size |
ไม่เกี่ยวข้องกับประเด็นที่สนใจ | O |
Usage
You can use this model for sequence tagging and aspect-based sentiment analysis in the Thai language. Here is a quick example of how to use it:
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("Keetawan/xlm-roberta-large-aspect-based-sentiment")
model = AutoModelForTokenClassification.from_pretrained("Keetawan/xlm-roberta-large-aspect-based-sentiment")
nlp = pipeline("token-classification", model=model, tokenizer=tokenizer)
text = "ใส่ประโยคภาษาไทยที่ต้องการวิเคราะห์ที่นี่"
result = nlp(text)
for item in result:
print(item)
Citation
If you use this model in your research or applications, please cite it as follows:
@misc{keetawan2024aspectsentiment,
author = {Keetawan Limaroon},
title = {XLM-RoBERTa-Large for Aspect-Based Sentiment Analysis in Thai},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/Keetawan/xlm-roberta-large-aspect-based-sentiment},
}
- Downloads last month
- 26
Model tree for Keetawan/xlm-roberta-large-aspect-based-sentiment
Base model
FacebookAI/xlm-roberta-large