summarisation_model

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3693
  • Rouge1: 0.3115
  • Rouge2: 0.1433
  • Rougel: 0.2744
  • Rougelsum: 0.2741
  • Gen Len: 19.957

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 105 2.4604 0.2865 0.125 0.2496 0.2493 19.9403
No log 2.0 210 2.3996 0.3023 0.1376 0.2654 0.2655 19.9379
No log 3.0 315 2.3755 0.3086 0.1422 0.2713 0.2716 19.9332
No log 4.0 420 2.3693 0.3115 0.1433 0.2744 0.2741 19.957

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
60.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Kankanaghosh/summarisation_model

Base model

google-t5/t5-small
Finetuned
(1806)
this model