speaker-segmentation-fine-tuned-backup-uganda
This model is a fine-tuned version of pyannote/segmentation-3.0 on the KMayanja/backup_uganda default dataset. It achieves the following results on the evaluation set:
- Loss: 0.2271
- Der: 0.0667
- False Alarm: 0.0188
- Missed Detection: 0.0260
- Confusion: 0.0219
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|
0.1819 | 1.0 | 266 | 0.2174 | 0.0663 | 0.0186 | 0.0249 | 0.0228 |
0.1659 | 2.0 | 532 | 0.2177 | 0.0669 | 0.0169 | 0.0278 | 0.0221 |
0.1549 | 3.0 | 798 | 0.2170 | 0.0659 | 0.0181 | 0.0261 | 0.0217 |
0.1535 | 4.0 | 1064 | 0.2222 | 0.0666 | 0.0195 | 0.0251 | 0.0220 |
0.1541 | 5.0 | 1330 | 0.2271 | 0.0667 | 0.0188 | 0.0260 | 0.0219 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 16
Model tree for KMayanja/speaker-segmentation-fine-tuned-backup-uganda
Base model
pyannote/segmentation-3.0