Edit model card

Below is the reference code for inference. First load the tokenizer and the model.

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("KLGR123/WEPO-gemma-2b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("KLGR123/WEPO-gemma-2b", trust_remote_code=True).to('cuda:0')

Run a test-demo with random input.

messages = [
    {"role": "system", "content": "You are a web navigation intelligence who interacts with webpage environments to achieve human user intent."},
    {"role": "user", "content": "Who are you?"},
]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=128,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.2,
    top_p=0.9,
)

response = outputs[0][input_ids.shape[-1]:]
output = tokenizer.decode(response, skip_special_tokens=True)
output
Downloads last month
13
Safetensors
Model size
2.51B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.