Edit model card

This model is finetuned from mt5-base.

The model vocabulary is trimmed to ~1/3 by selecting top 85000 tokens in the training data. The code to trim the vocabulary can be found here.

Usage:

from transformers import (
  T5Tokenizer,
  MT5ForConditionalGeneration,
  Text2TextGenerationPipeline,
)

path = "K024/mt5-zh-ja-en-trimmed"
pipe = Text2TextGenerationPipeline(
  model=MT5ForConditionalGeneration.from_pretrained(path),
  tokenizer=T5Tokenizer.from_pretrained(path),
)

sentence = "ja2zh: 吾輩は猫である。名前はまだ無い。"
res = pipe(sentence, max_length=100, num_beams=4)
res[0]['generated_text']

Training data:

wikimedia-en-ja
wikimedia-en-zh
wikimedia-ja-zh
wikititles-ja-en
wikititles-zh-en
wikimatrix-ja-zh
news-commentary-en-ja
news-commentary-en-zh
news-commentary-ja-zh
ted2020-en-ja
ted2020-en-zh
ted2020-ja-zh

License: CC BY-NC-SA 4.0

Downloads last month
310
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using K024/mt5-zh-ja-en-trimmed 2