distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6623
  • Accuracy: 0.82

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2457 1.0 113 2.1827 0.33
1.8385 2.0 226 1.6935 0.61
1.46 3.0 339 1.4282 0.63
1.1508 4.0 452 1.1055 0.7
0.9972 5.0 565 0.8945 0.74
0.7826 6.0 678 0.7784 0.77
0.6802 7.0 791 0.7184 0.8
0.4635 8.0 904 0.7725 0.76
0.3746 9.0 1017 0.5875 0.84
0.264 10.0 1130 0.7612 0.75
0.1995 11.0 1243 0.6099 0.81
0.135 12.0 1356 0.6306 0.81
0.0974 13.0 1469 0.5947 0.83
0.0563 14.0 1582 0.7485 0.8
0.0443 15.0 1695 0.6977 0.79
0.0565 16.0 1808 0.6331 0.83
0.0295 17.0 1921 0.6538 0.82
0.0178 18.0 2034 0.6977 0.82
0.0191 19.0 2147 0.6453 0.83
0.0147 20.0 2260 0.6623 0.82

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for JvThunder/distilhubert-finetuned-gtzan

Finetuned
(422)
this model

Dataset used to train JvThunder/distilhubert-finetuned-gtzan

Evaluation results