Edit model card

distilbert-base-uncased-finetuned-pos-kk-3080

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6344
  • Precision: 0.6506
  • Recall: 0.6342
  • F1: 0.6423
  • Accuracy: 0.7199

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 59 2.3411 0.6246 0.6067 0.6155 0.7026
No log 2.0 118 2.1636 0.6382 0.625 0.6315 0.7093
No log 3.0 177 2.2138 0.6121 0.6044 0.6082 0.6920
No log 4.0 236 2.3509 0.6271 0.6307 0.6289 0.7045
No log 5.0 295 2.2692 0.6408 0.6239 0.6322 0.7113
No log 6.0 354 2.1764 0.6408 0.6261 0.6334 0.7103
No log 7.0 413 2.2618 0.6404 0.6147 0.6273 0.7093
No log 8.0 472 2.3162 0.6423 0.6239 0.6329 0.7122
0.0115 9.0 531 2.3318 0.6338 0.6193 0.6265 0.7093
0.0115 10.0 590 2.3152 0.6316 0.6273 0.6295 0.7036
0.0115 11.0 649 2.2334 0.6307 0.6170 0.6238 0.7026
0.0115 12.0 708 2.2705 0.6446 0.6261 0.6353 0.7161
0.0115 13.0 767 2.3049 0.6313 0.6204 0.6258 0.7055
0.0115 14.0 826 2.2713 0.6391 0.6193 0.6290 0.7151
0.0115 15.0 885 2.2914 0.6350 0.6204 0.6276 0.7122
0.0115 16.0 944 2.1958 0.6286 0.6193 0.6239 0.7055
0.0078 17.0 1003 2.3721 0.6200 0.6193 0.6196 0.7026
0.0078 18.0 1062 2.2756 0.6544 0.6319 0.6429 0.7238
0.0078 19.0 1121 2.3066 0.6585 0.6433 0.6508 0.7276
0.0078 20.0 1180 2.3065 0.6489 0.6273 0.6379 0.7141
0.0078 21.0 1239 2.3865 0.6314 0.6365 0.6339 0.7122
0.0078 22.0 1298 2.4231 0.6263 0.6284 0.6274 0.7084
0.0078 23.0 1357 2.3871 0.6247 0.6319 0.6283 0.7084
0.0078 24.0 1416 2.4611 0.6390 0.6273 0.6331 0.7170
0.0078 25.0 1475 2.3563 0.6345 0.6193 0.6268 0.7045
0.0043 26.0 1534 2.4208 0.6424 0.6261 0.6341 0.7190
0.0043 27.0 1593 2.3468 0.6343 0.6227 0.6285 0.7103
0.0043 28.0 1652 2.4458 0.6397 0.625 0.6323 0.7161
0.0043 29.0 1711 2.4779 0.6394 0.6284 0.6339 0.7113
0.0043 30.0 1770 2.3498 0.6466 0.6273 0.6368 0.7161
0.0043 31.0 1829 2.4026 0.6454 0.6388 0.6421 0.7141
0.0043 32.0 1888 2.4380 0.6394 0.6284 0.6339 0.7132
0.0043 33.0 1947 2.4099 0.6360 0.6193 0.6275 0.7084
0.0027 34.0 2006 2.4331 0.6370 0.6158 0.6262 0.7093
0.0027 35.0 2065 2.4166 0.6519 0.6399 0.6458 0.7199
0.0027 36.0 2124 2.5268 0.6303 0.6353 0.6328 0.7055
0.0027 37.0 2183 2.4152 0.6377 0.6319 0.6348 0.7074
0.0027 38.0 2242 2.5392 0.6293 0.6307 0.6300 0.7045
0.0027 39.0 2301 2.5672 0.6324 0.6353 0.6339 0.7093
0.0027 40.0 2360 2.5116 0.6323 0.6330 0.6327 0.7093
0.0027 41.0 2419 2.5884 0.6362 0.6376 0.6369 0.7113
0.0027 42.0 2478 2.5252 0.6512 0.6273 0.6390 0.7180
0.0021 43.0 2537 2.4763 0.6480 0.6353 0.6416 0.7151
0.0021 44.0 2596 2.4957 0.6455 0.6307 0.6381 0.7132
0.0021 45.0 2655 2.5187 0.6441 0.6330 0.6385 0.7064
0.0021 46.0 2714 2.4969 0.6524 0.6307 0.6414 0.7161
0.0021 47.0 2773 2.5839 0.6567 0.6296 0.6429 0.7180
0.0021 48.0 2832 2.4747 0.6647 0.6342 0.6491 0.7267
0.0021 49.0 2891 2.5119 0.6492 0.6411 0.6451 0.7218
0.0021 50.0 2950 2.5855 0.6382 0.6330 0.6356 0.7132
0.0016 51.0 3009 2.5679 0.6549 0.6376 0.6461 0.7190
0.0016 52.0 3068 2.4618 0.6631 0.6388 0.6507 0.7295
0.0016 53.0 3127 2.5270 0.6529 0.6170 0.6344 0.7141
0.0016 54.0 3186 2.5133 0.6485 0.6284 0.6383 0.7141
0.0016 55.0 3245 2.4895 0.6560 0.6342 0.6449 0.7180
0.0016 56.0 3304 2.5001 0.6650 0.6261 0.6450 0.7267
0.0016 57.0 3363 2.5202 0.6516 0.6284 0.6398 0.7180
0.0016 58.0 3422 2.4701 0.6715 0.6330 0.6517 0.7305
0.0016 59.0 3481 2.4988 0.6598 0.625 0.6419 0.7238
0.0015 60.0 3540 2.5555 0.6499 0.6216 0.6354 0.7161
0.0015 61.0 3599 2.5242 0.6487 0.6353 0.6419 0.7228
0.0015 62.0 3658 2.5146 0.6618 0.6284 0.6447 0.7190
0.0015 63.0 3717 2.5632 0.6496 0.625 0.6371 0.7170
0.0015 64.0 3776 2.5966 0.6486 0.6307 0.6395 0.7209
0.0015 65.0 3835 2.6079 0.6386 0.6261 0.6323 0.7170
0.0015 66.0 3894 2.5620 0.6355 0.6239 0.6296 0.7084
0.0015 67.0 3953 2.5748 0.6566 0.625 0.6404 0.7218
0.0009 68.0 4012 2.5582 0.6548 0.6353 0.6449 0.7209
0.0009 69.0 4071 2.5776 0.6549 0.6181 0.6360 0.7209
0.0009 70.0 4130 2.5435 0.6619 0.6330 0.6471 0.7267
0.0009 71.0 4189 2.5359 0.6489 0.6296 0.6391 0.7199
0.0009 72.0 4248 2.6138 0.6394 0.6284 0.6339 0.7151
0.0009 73.0 4307 2.6431 0.6385 0.6158 0.6270 0.7093
0.0009 74.0 4366 2.6701 0.6412 0.6353 0.6382 0.7151
0.0009 75.0 4425 2.6492 0.6511 0.6376 0.6443 0.7199
0.0009 76.0 4484 2.6477 0.6564 0.6376 0.6469 0.7218
0.0007 77.0 4543 2.6216 0.6422 0.6216 0.6317 0.7122
0.0007 78.0 4602 2.6166 0.6446 0.6261 0.6353 0.7132
0.0007 79.0 4661 2.7084 0.6382 0.6353 0.6368 0.7180
0.0007 80.0 4720 2.6783 0.6482 0.6296 0.6387 0.7199
0.0007 81.0 4779 2.7061 0.6472 0.6353 0.6412 0.7170
0.0007 82.0 4838 2.6468 0.6503 0.6376 0.6439 0.7190
0.0007 83.0 4897 2.6437 0.6404 0.6330 0.6367 0.7141
0.0007 84.0 4956 2.5965 0.6474 0.6296 0.6384 0.7170
0.0009 85.0 5015 2.6175 0.6524 0.6307 0.6414 0.7199
0.0009 86.0 5074 2.6304 0.6471 0.6307 0.6388 0.7161
0.0009 87.0 5133 2.6389 0.6524 0.6284 0.6402 0.7199
0.0009 88.0 5192 2.6132 0.6544 0.6296 0.6417 0.7218
0.0009 89.0 5251 2.5972 0.6475 0.6319 0.6396 0.7180
0.0009 90.0 5310 2.6066 0.6580 0.6376 0.6476 0.7257
0.0009 91.0 5369 2.6175 0.6611 0.6330 0.6467 0.7238
0.0009 92.0 5428 2.6420 0.6506 0.6365 0.6435 0.7238
0.0009 93.0 5487 2.6679 0.6480 0.6376 0.6428 0.7209
0.0007 94.0 5546 2.6318 0.6486 0.6330 0.6407 0.7199
0.0007 95.0 5605 2.6225 0.6553 0.6365 0.6457 0.7228
0.0007 96.0 5664 2.6299 0.6502 0.6330 0.6415 0.7199
0.0007 97.0 5723 2.6313 0.6514 0.6342 0.6426 0.7209
0.0007 98.0 5782 2.6338 0.6518 0.6353 0.6434 0.7209
0.0007 99.0 5841 2.6334 0.6518 0.6353 0.6434 0.7209
0.0007 100.0 5900 2.6344 0.6506 0.6342 0.6423 0.7199

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.2.1+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Justice0893/distilbert-base-uncased-finetuned-pos-kk-3080

Finetuned
(6775)
this model