distilbart-cnn-6-6-finetuned-summscreen-10-epochs
This model is a fine-tuned version of sshleifer/distilbart-cnn-6-6 on the SummScreen dataset. It achieves the following results on the evaluation set:
- Loss: 3.4962
- Rouge1: 26.3499
- Rouge2: 7.3999
- Rougel: 18.6087
- Rougelsum: 23.17
- Gen Len: 49.8609
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
3.1229 | 1.0 | 3673 | 3.1271 | 26.6959 | 7.4401 | 18.8303 | 23.7132 | 49.9763 |
2.8872 | 2.0 | 7346 | 3.0482 | 26.6447 | 7.5599 | 18.5921 | 23.2786 | 49.8195 |
2.5733 | 3.0 | 11019 | 3.0292 | 27.425 | 7.9963 | 19.3544 | 24.1281 | 49.8757 |
2.3886 | 4.0 | 14692 | 3.0625 | 27.1291 | 7.5541 | 18.9375 | 23.8729 | 49.8905 |
2.215 | 5.0 | 18365 | 3.1118 | 27.1773 | 7.551 | 19.0524 | 24.1015 | 49.9142 |
2.0377 | 6.0 | 22038 | 3.2086 | 27.2237 | 7.8821 | 19.2136 | 24.0477 | 49.784 |
1.9358 | 7.0 | 25711 | 3.3405 | 26.7555 | 7.6628 | 18.8609 | 23.5264 | 49.8343 |
1.8292 | 8.0 | 29384 | 3.4124 | 26.7741 | 7.4529 | 18.9276 | 23.5827 | 49.8757 |
1.7702 | 9.0 | 33057 | 3.4457 | 26.6281 | 7.4415 | 18.7932 | 23.4608 | 49.8639 |
1.7443 | 10.0 | 36730 | 3.4962 | 26.3499 | 7.3999 | 18.6087 | 23.17 | 49.8609 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.