llama3.2-3b-hard
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0052
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.6035 | 0.5202 | 100 | 2.2469 |
2.412 | 1.0403 | 200 | 2.1836 |
2.3523 | 1.5605 | 300 | 2.1436 |
2.3063 | 2.0806 | 400 | 2.1116 |
2.24 | 2.6008 | 500 | 2.0822 |
2.2205 | 3.1209 | 600 | 2.0610 |
2.169 | 3.6411 | 700 | 2.0429 |
2.1232 | 4.1612 | 800 | 2.0338 |
2.1088 | 4.6814 | 900 | 2.0237 |
2.0885 | 5.2016 | 1000 | 2.0192 |
2.0604 | 5.7217 | 1100 | 2.0126 |
2.0353 | 6.2419 | 1200 | 2.0069 |
1.9994 | 6.7620 | 1300 | 2.0035 |
1.9972 | 7.2822 | 1400 | 2.0057 |
1.9674 | 7.8023 | 1500 | 1.9955 |
1.9455 | 8.3225 | 1600 | 2.0008 |
1.9392 | 8.8427 | 1700 | 2.0010 |
1.9339 | 9.3628 | 1800 | 2.0055 |
1.9034 | 9.8830 | 1900 | 1.9982 |
1.8877 | 10.4031 | 2000 | 2.0052 |
Framework versions
- PEFT 0.12.0
- Transformers 4.45.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 6
Model tree for Jsoo/llama3.2-3b-hard
Base model
meta-llama/Llama-3.2-3B-Instruct