balanced-augmented-bert-gest-pred-seqeval-partialmatch-2

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3649
  • Precision: 0.9322
  • Recall: 0.9236
  • F1: 0.9235
  • Accuracy: 0.9138

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
3.1239 1.0 52 2.5758 0.1906 0.1293 0.1175 0.3121
2.1363 2.0 104 1.7477 0.4478 0.4505 0.4151 0.5576
1.5182 3.0 156 1.3113 0.7051 0.6014 0.5633 0.6507
1.0948 4.0 208 0.9763 0.7361 0.6854 0.6695 0.7183
0.7591 5.0 260 0.7834 0.7900 0.7905 0.7726 0.7869
0.5168 6.0 312 0.5764 0.8775 0.8569 0.8479 0.8550
0.3609 7.0 364 0.5130 0.9055 0.8857 0.8815 0.8760
0.2538 8.0 416 0.4872 0.9106 0.8828 0.8865 0.8805
0.1898 9.0 468 0.3937 0.9219 0.9070 0.9076 0.8996
0.1343 10.0 520 0.3897 0.9271 0.9016 0.9095 0.9010
0.1053 11.0 572 0.3900 0.9309 0.9085 0.9143 0.9030
0.0788 12.0 624 0.3649 0.9322 0.9236 0.9235 0.9138
0.0643 13.0 676 0.4147 0.9293 0.9073 0.9122 0.9045
0.0501 14.0 728 0.4788 0.9369 0.9205 0.9200 0.9054
0.0424 15.0 780 0.4003 0.9346 0.9180 0.9197 0.9094
0.0376 16.0 832 0.3686 0.9373 0.9261 0.9274 0.9182
0.0317 17.0 884 0.4025 0.9360 0.9199 0.9223 0.9098
0.0288 18.0 936 0.4484 0.9406 0.9212 0.9239 0.9098
0.0282 19.0 988 0.4004 0.9377 0.9207 0.9238 0.9094
0.0256 20.0 1040 0.4046 0.9383 0.9205 0.9237 0.9098

Framework versions

  • Transformers 4.27.3
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2

LICENSE

Copyright (c) 2014, Universidad Carlos III de Madrid. Todos los derechos reservados. Este software es propiedad de la Universidad Carlos III de Madrid, grupo de investigación Robots Sociales. La Universidad Carlos III de Madrid es titular en exclusiva de los derechos de propiedad intelectual de este software. Queda prohibido cualquier uso indebido o no autorizado, entre estos, a título enunciativo pero no limitativo, la reproducción, fijación, distribución, comunicación pública, ingeniería inversa y/o transformación sobre dicho software, ya sea total o parcialmente, siendo el responsable del uso indebido o no autorizado también responsable de las consecuencias legales que pudieran derivarse de sus actos.

Downloads last month
109
Safetensors
Model size
108M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Jsevisal/balanced-augmented-bert-gest-pred-seqeval-partialmatch-2