Edit model card

roberta-base-ca-finetuned-catalonia-independence-detector

This model is a fine-tuned version of BSC-TeMU/roberta-base-ca on the catalonia_independence dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6065
  • Accuracy: 0.7612

Training and evaluation data

The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia.

Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 377 0.6311 0.7453
0.7393 2.0 754 0.6065 0.7612
0.5019 3.0 1131 0.6340 0.7547
0.3837 4.0 1508 0.6777 0.7597
0.3837 5.0 1885 0.7232 0.7582

Model in action 🚀

Fast usage with pipelines:


from transformers import pipeline

model_path = "JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector"
independence_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path)

independence_analysis(
    "Assegura l'expert que en un 46% els catalans s'inclouen dins del que es denomina com el doble sentiment identitari. És a dir, se senten tant catalans com espanyols. 1 de cada cinc, en canvi, té un sentiment excloent, només se senten catalans, i un 4% sol espanyol."
    )
# Output:
[{'label': 'AGAINST', 'score': 0.7457581758499146}]

independence_analysis(
    "Llarena demana la detenció de Comín i Ponsatí aprofitant que són a Itàlia amb Puigdemont"
    )
# Output:
[{'label': 'NEUTRAL', 'score': 0.7436802983283997}] 
    
independence_analysis(
    "Puigdemont, a l'estat espanyol: Quatre anys després, ens hem guanyat el dret a dir prou"
    )
# Output:
[{'label': 'FAVOR', 'score': 0.9040119647979736}]

Open In Colab

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.9.0+cu111
  • Datasets 1.12.1
  • Tokenizers 0.10.3

Citation

Thx to HF.co & @lewtun for Dataset ;)

Special thx to Manuel Romero/@mrm8488 as my mentor & R.C.

Created by Jonatan Luna | LinkedIn

Downloads last month
26
Hosted inference API
Text Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.

Dataset used to train JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector

Space using JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector

Evaluation results