SimianLuo/LCM_Dreamshaper_v7
compiled on an AWS Inf2 instance. INF2/TRN1 ONLY
How to use
from optimum.neuron import NeuronLatentConsistencyModelPipeline
pipe = NeuronLatentConsistencyModelPipeline.from_pretrained("Jingya/LCM_Dreamshaper_v7_neuronx")
num_images_per_prompt = 2
prompt = ["Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"] * num_images_per_prompt
images = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=8.0).images
If you are using a later neuron compiler version, you can compile the checkpoint yourself with the following lines via ๐ค optimum-neuron
(the compilation takes approximately 40 min):
from optimum.neuron import NeuronLatentConsistencyModelPipeline
model_id = "SimianLuo/LCM_Dreamshaper_v7"
num_images_per_prompt = 1
input_shapes = {"batch_size": 1, "height": 768, "width": 768, "num_images_per_prompt": num_images_per_prompt}
compiler_args = {"auto_cast": "matmul", "auto_cast_type": "bf16"}
stable_diffusion = NeuronLatentConsistencyModelPipeline.from_pretrained(
model_id, export=True, **compiler_args, **input_shapes
)
save_directory = "lcm_sd_neuron/"
stable_diffusion.save_pretrained(save_directory)
# Push to hub
stable_diffusion.push_to_hub(save_directory, repository_id="Jingya/LCM_Dreamshaper_v7_neuronx", use_auth_token=True)
And feel free to make a pull request and contribute to this repo, thx ๐ค!