BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Jaswanth160/bge-base-financial-matryoshka")
# Run inference
sentences = [
'The par call date for the 7% Notes due 2029 is August 15, 2025, allowing for redemption at par from this date onward.',
'What is the earliest date on which the 7% Notes due 2029 can be redeemed at par?',
'What are some of the initiatives managed by Visa for supporting underrepresented communities?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6943 |
cosine_accuracy@3 | 0.8314 |
cosine_accuracy@5 | 0.8729 |
cosine_accuracy@10 | 0.9071 |
cosine_precision@1 | 0.6943 |
cosine_precision@3 | 0.2771 |
cosine_precision@5 | 0.1746 |
cosine_precision@10 | 0.0907 |
cosine_recall@1 | 0.6943 |
cosine_recall@3 | 0.8314 |
cosine_recall@5 | 0.8729 |
cosine_recall@10 | 0.9071 |
cosine_ndcg@10 | 0.8042 |
cosine_mrr@10 | 0.7709 |
cosine_map@100 | 0.7746 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6986 |
cosine_accuracy@3 | 0.8371 |
cosine_accuracy@5 | 0.87 |
cosine_accuracy@10 | 0.9114 |
cosine_precision@1 | 0.6986 |
cosine_precision@3 | 0.279 |
cosine_precision@5 | 0.174 |
cosine_precision@10 | 0.0911 |
cosine_recall@1 | 0.6986 |
cosine_recall@3 | 0.8371 |
cosine_recall@5 | 0.87 |
cosine_recall@10 | 0.9114 |
cosine_ndcg@10 | 0.8076 |
cosine_mrr@10 | 0.7741 |
cosine_map@100 | 0.7777 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7 |
cosine_accuracy@3 | 0.83 |
cosine_accuracy@5 | 0.86 |
cosine_accuracy@10 | 0.9071 |
cosine_precision@1 | 0.7 |
cosine_precision@3 | 0.2767 |
cosine_precision@5 | 0.172 |
cosine_precision@10 | 0.0907 |
cosine_recall@1 | 0.7 |
cosine_recall@3 | 0.83 |
cosine_recall@5 | 0.86 |
cosine_recall@10 | 0.9071 |
cosine_ndcg@10 | 0.8048 |
cosine_mrr@10 | 0.772 |
cosine_map@100 | 0.7755 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.67 |
cosine_accuracy@3 | 0.8186 |
cosine_accuracy@5 | 0.8571 |
cosine_accuracy@10 | 0.8971 |
cosine_precision@1 | 0.67 |
cosine_precision@3 | 0.2729 |
cosine_precision@5 | 0.1714 |
cosine_precision@10 | 0.0897 |
cosine_recall@1 | 0.67 |
cosine_recall@3 | 0.8186 |
cosine_recall@5 | 0.8571 |
cosine_recall@10 | 0.8971 |
cosine_ndcg@10 | 0.7868 |
cosine_mrr@10 | 0.7511 |
cosine_map@100 | 0.7552 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.65 |
cosine_accuracy@3 | 0.7914 |
cosine_accuracy@5 | 0.8386 |
cosine_accuracy@10 | 0.8786 |
cosine_precision@1 | 0.65 |
cosine_precision@3 | 0.2638 |
cosine_precision@5 | 0.1677 |
cosine_precision@10 | 0.0879 |
cosine_recall@1 | 0.65 |
cosine_recall@3 | 0.7914 |
cosine_recall@5 | 0.8386 |
cosine_recall@10 | 0.8786 |
cosine_ndcg@10 | 0.7646 |
cosine_mrr@10 | 0.7278 |
cosine_map@100 | 0.7326 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 6 tokens
- mean: 47.11 tokens
- max: 439 tokens
- min: 7 tokens
- mean: 20.36 tokens
- max: 51 tokens
- Samples:
positive anchor For some of our medical membership, we share risk with providers under capitation contracts where physicians and hospitals accept varying levels of financial risk for a defined set of membership, primarily HMO membership.
What is the primary type of membership for which risk is shared with providers under capitation contracts?
Revenue for Comcast's Theme Parks segment is primarily derived from guest spending at the theme parks, including ticket sales and in-park spending on food, beverages, and merchandise.
What is the primary revenue source for Comcast's Theme Parks segment?
In August 2022, the Board of Directors authorized a program to repurchase up to $10.0 billion of the Company’s common stock, referred to as the "Share Repurchase Program". In February 2023, the Board of Directors authorized an additional $10.0 billion in repurchases under the Share Repurchase Program, bringing the aggregate total authorized to $20.0 billion.
What was the total authorization amount for the Share Repurchase Program of the Company as of February 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5811 | - | - | - | - | - |
0.9746 | 12 | - | 0.7341 | 0.7568 | 0.7632 | 0.7056 | 0.7660 |
1.6244 | 20 | 0.6854 | - | - | - | - | - |
1.9492 | 24 | - | 0.7516 | 0.7705 | 0.7722 | 0.7263 | 0.7702 |
2.4365 | 30 | 0.4874 | - | - | - | - | - |
2.9239 | 36 | - | 0.755 | 0.7747 | 0.7756 | 0.7321 | 0.7739 |
3.2487 | 40 | 0.3876 | - | - | - | - | - |
3.8985 | 48 | - | 0.7552 | 0.7755 | 0.7777 | 0.7326 | 0.7746 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.33.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Jaswanth160/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.694
- Cosine Accuracy@3 on dim 768self-reported0.831
- Cosine Accuracy@5 on dim 768self-reported0.873
- Cosine Accuracy@10 on dim 768self-reported0.907
- Cosine Precision@1 on dim 768self-reported0.694
- Cosine Precision@3 on dim 768self-reported0.277
- Cosine Precision@5 on dim 768self-reported0.175
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.694
- Cosine Recall@3 on dim 768self-reported0.831