seizure_vit_jlb_231027

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the JLB-JLB/seizure_eeg_greyscale_224x224_6secWindow_adjusted dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4759
  • Roc Auc: 0.7822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Roc Auc
0.4787 0.17 1000 0.5094 0.7706
0.3695 0.34 2000 0.5111 0.7359
0.337 0.51 3000 0.4734 0.7829
0.3604 0.68 4000 0.5508 0.7457
0.3222 0.85 5000 0.5817 0.7687
0.2315 1.02 6000 0.6515 0.7679
0.2388 1.19 7000 0.5681 0.7543
0.2691 1.36 8000 0.5307 0.7691
0.268 1.53 9000 0.5643 0.7610
0.131 1.7 10000 0.7293 0.7451
0.2303 1.87 11000 0.6291 0.7704
0.1442 2.04 12000 0.6372 0.7871
0.1325 2.21 13000 0.8672 0.7319
0.1986 2.38 14000 0.7352 0.7532
0.1669 2.55 15000 0.8195 0.7562
0.1228 2.72 16000 1.0106 0.7239
0.1071 2.89 17000 0.8957 0.7463
0.1322 3.06 18000 1.0871 0.7408
0.1676 3.24 19000 0.9173 0.7683
0.1105 3.41 20000 1.0175 0.7700
0.1451 3.58 21000 0.9357 0.7404
0.082 3.75 22000 1.1246 0.7404
0.1457 3.92 23000 1.0082 0.7502
0.0336 4.09 24000 1.3685 0.7443
0.0742 4.26 25000 1.5080 0.7227
0.0353 4.43 26000 1.3573 0.7421
0.0557 4.6 27000 1.2484 0.7472
0.075 4.77 28000 1.2750 0.7462
0.0569 4.94 29000 1.3954 0.7355

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for JLB-JLB/seizure_vit_jlb_231027

Finetuned
(1870)
this model