vit-finetune-kidney-stone-Michel_Daudon_-w256_1k_v1-_MIX-pretrain
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4746
- Accuracy: 0.8496
- Precision: 0.8598
- Recall: 0.8496
- F1: 0.8525
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.2473 | 0.3333 | 100 | 0.4746 | 0.8496 | 0.8598 | 0.8496 | 0.8525 |
0.2861 | 0.6667 | 200 | 0.8501 | 0.7712 | 0.8390 | 0.7712 | 0.7669 |
0.1879 | 1.0 | 300 | 0.5770 | 0.8087 | 0.8161 | 0.8087 | 0.8050 |
0.0231 | 1.3333 | 400 | 0.6048 | 0.8413 | 0.8497 | 0.8413 | 0.8397 |
0.095 | 1.6667 | 500 | 0.6374 | 0.8454 | 0.8771 | 0.8454 | 0.8458 |
0.0454 | 2.0 | 600 | 0.6772 | 0.8204 | 0.8424 | 0.8204 | 0.8275 |
0.0668 | 2.3333 | 700 | 0.7371 | 0.8321 | 0.8458 | 0.8321 | 0.8313 |
0.0145 | 2.6667 | 800 | 0.8734 | 0.8363 | 0.8700 | 0.8363 | 0.8369 |
0.0288 | 3.0 | 900 | 0.9109 | 0.8279 | 0.8649 | 0.8279 | 0.8276 |
0.0216 | 3.3333 | 1000 | 1.0871 | 0.7983 | 0.8372 | 0.7983 | 0.7925 |
0.0874 | 3.6667 | 1100 | 1.1486 | 0.7975 | 0.8589 | 0.7975 | 0.7993 |
0.0036 | 4.0 | 1200 | 0.8451 | 0.8308 | 0.8581 | 0.8308 | 0.8326 |
0.0059 | 4.3333 | 1300 | 0.6169 | 0.8667 | 0.8932 | 0.8667 | 0.8679 |
0.0476 | 4.6667 | 1400 | 0.7147 | 0.8579 | 0.8615 | 0.8579 | 0.8532 |
0.1213 | 5.0 | 1500 | 1.0007 | 0.8233 | 0.8589 | 0.8233 | 0.8199 |
0.0267 | 5.3333 | 1600 | 0.7032 | 0.8508 | 0.8587 | 0.8508 | 0.8510 |
0.0024 | 5.6667 | 1700 | 0.5666 | 0.8908 | 0.9006 | 0.8908 | 0.8931 |
0.0149 | 6.0 | 1800 | 0.5346 | 0.9062 | 0.9122 | 0.9062 | 0.9063 |
0.0011 | 6.3333 | 1900 | 0.9493 | 0.8304 | 0.8595 | 0.8304 | 0.8162 |
0.1168 | 6.6667 | 2000 | 0.7843 | 0.8642 | 0.8732 | 0.8642 | 0.8673 |
0.0015 | 7.0 | 2100 | 0.7234 | 0.8638 | 0.8777 | 0.8638 | 0.8563 |
0.0007 | 7.3333 | 2200 | 0.7182 | 0.8721 | 0.8875 | 0.8721 | 0.8680 |
0.052 | 7.6667 | 2300 | 0.7523 | 0.8692 | 0.8869 | 0.8692 | 0.8628 |
0.0013 | 8.0 | 2400 | 0.9651 | 0.8104 | 0.8386 | 0.8104 | 0.8117 |
0.0006 | 8.3333 | 2500 | 0.8654 | 0.8496 | 0.8497 | 0.8496 | 0.8452 |
0.0006 | 8.6667 | 2600 | 0.9136 | 0.8438 | 0.8532 | 0.8438 | 0.8414 |
0.0005 | 9.0 | 2700 | 0.8312 | 0.8525 | 0.8640 | 0.8525 | 0.8477 |
0.0005 | 9.3333 | 2800 | 0.7532 | 0.8675 | 0.8719 | 0.8675 | 0.8640 |
0.0005 | 9.6667 | 2900 | 0.9026 | 0.8421 | 0.8648 | 0.8421 | 0.8409 |
0.0004 | 10.0 | 3000 | 0.8117 | 0.8538 | 0.8702 | 0.8538 | 0.8539 |
0.0003 | 10.3333 | 3100 | 0.8112 | 0.8546 | 0.8697 | 0.8546 | 0.8544 |
0.0003 | 10.6667 | 3200 | 0.8165 | 0.8546 | 0.8697 | 0.8546 | 0.8544 |
0.0003 | 11.0 | 3300 | 0.8219 | 0.855 | 0.8698 | 0.855 | 0.8549 |
0.0003 | 11.3333 | 3400 | 0.8266 | 0.8546 | 0.8694 | 0.8546 | 0.8545 |
0.0003 | 11.6667 | 3500 | 0.8307 | 0.8546 | 0.8694 | 0.8546 | 0.8545 |
0.0003 | 12.0 | 3600 | 0.8349 | 0.8546 | 0.8694 | 0.8546 | 0.8544 |
0.0003 | 12.3333 | 3700 | 0.8381 | 0.855 | 0.8699 | 0.855 | 0.8548 |
0.0003 | 12.6667 | 3800 | 0.8411 | 0.8558 | 0.8707 | 0.8558 | 0.8557 |
0.0002 | 13.0 | 3900 | 0.8439 | 0.8554 | 0.8704 | 0.8554 | 0.8553 |
0.0002 | 13.3333 | 4000 | 0.8459 | 0.8562 | 0.8712 | 0.8562 | 0.8561 |
0.0002 | 13.6667 | 4100 | 0.8479 | 0.8562 | 0.8713 | 0.8562 | 0.8561 |
0.0002 | 14.0 | 4200 | 0.8496 | 0.8558 | 0.8710 | 0.8558 | 0.8556 |
0.0002 | 14.3333 | 4300 | 0.8508 | 0.8558 | 0.8710 | 0.8558 | 0.8556 |
0.0002 | 14.6667 | 4400 | 0.8515 | 0.855 | 0.8702 | 0.855 | 0.8548 |
0.0002 | 15.0 | 4500 | 0.8517 | 0.8554 | 0.8707 | 0.8554 | 0.8552 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Ivanrs/vit-finetune-kidney-stone-Michel_Daudon_-w256_1k_v1-_MIX-pretrain
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.850
- Precision on imagefoldertest set self-reported0.860
- Recall on imagefoldertest set self-reported0.850
- F1 on imagefoldertest set self-reported0.852